luminance discrimination possibility $L / \Delta L$ as function of H

 with: $L=10^{x} H=\mathrm{e}^{h}=10^{\operatorname{loge~} \mathrm{k}(x-u)}$ $\mathrm{d} L / \mathrm{d} x=\ln 10 L \quad \mathrm{~d} H / \mathrm{d} x=\mathrm{k} H$ it follows: $L / \Delta L=[\mathrm{k} H /(\mathrm{d} H \ln 10)]$ $\frac{L}{\mathrm{~d} L}=$ const $H /[(1+\sqrt{2} H)(2+\sqrt{2} H)]$$Q^{\prime}[\mathrm{k}(x-u)$
$\rightarrow+\infty]=0$
$Q^{\prime}[\mathrm{k}(x-u)=0]=$ maximum
$Q^{\prime}[\mathrm{k}(x-u) \rightarrow-\infty]=0$

