Relative CIELAB data $n c e^{*}$ and $r g b^{*}{ }_{3}$ based on eight CIELAB reference colours

Klaus Richter
Federal Institute for Materials Research and Testing (BAM), BAM VIII. 1

Remark: This is a proposal for CIE Division 1 "Colour" for discussion at technical meetings. For this report (15 pages, 400 kByte, Version 2007-08-15) see the URL
http://www.ps.bam.de/CIE07R.PDF

Scope

In the CIELAB colour space, see CIE 15, there are two sets of equivalent absolute CIELAB coordinates, the cylindric coordinates L^{*}, C^{*} ab and $h_{\text {ab }}\left(L A B^{*} L C H^{*}=L C H^{*}\right.$, described here by capital letters) and the CIELAB cartesian coordinates L^{*}, a^{*} and $b^{*}\left(L A B^{*} L A B^{*}=L A B^{*}\right)$.

This report defines relative CIELAB coordinates lab* (small letters). Two new sets of equivalent relative CIELAB coordinates lab* $n c e^{*}=n c e^{*}$ and $l a b^{*} r g b_{3}^{*}=r g b^{*}{ }_{3}$ are defined. This report defines a linear relation between relative CIELAB coordinates (lab*) and the absolute CIELAB coordinates ($L A B^{*}$) if eight reference colours in the CIELAB space are given.

In the standard case of this report the relative coordinates $n c e^{*}$ and $r g b^{*}$ are calculated in relation to the six chromatic colours with the $L C H^{*}$ data ($L^{*}=50, C_{a b}^{*}=100, h_{a b}=30,90,150$, $210,270,330$) and the two achromatic colours with the $L C^{*}$ data ($L^{*}=0$ and $100, C^{*}{ }_{\text {ab }}=0$) for Black N and White W. The system with the above eight reference colours is called Standard Reflective System SRSOO. The eight CIELAB reference colours play a unique role in colour vision and therefore the calculation of the relative coordinates $n c e^{*}$ and $r g b^{*}{ }_{3}$ in relation to these reference colours is appropriate.
In this report three modifications of these reference colours are discussed according to different viewing situations and experimental results.

Remark: The coordinates nce* of this report are similar compared to the coordinates relative blackness, relative chroma and elementary hue number used in the NCS-colour system (see Svensk standard series SS 019100 to 03:1982)

1. Introduction

In the CIELAB colour space for example the colours of offset printing or the colours on a monitor may be located on a hue triangle as shown in Fig. 1 for a red hue.

Figure 1: Color attributes N^{*}, I^{*}, W^{*} and D^{*} in comparison to chroma C^{*} and lightness L^{*}

Fig 1 shows colour attributes blackness N^{*}, brilliantness I^{*}, whiteness W^{*} and colour deepness D^{*} in comparison to chroma C^{*} and lightness L^{*}. The colour attributes blackness N^{*} and brilliantness I* as well as whiteness W^{*} and colour deepness D^{*} are complementary. Therefore it is valid

$$
\begin{align*}
& N^{*}=100-I^{*} \tag{1}\\
& W^{*}=100-D^{*} \tag{2}
\end{align*}
$$

Further there is the hue triangle equation of Ostwald (1930)

$$
\begin{equation*}
N^{*}+W^{*}+C^{*}=100 \tag{3}
\end{equation*}
$$

Additionally there are linear relations between the four coordinates N^{*}, W^{*}, L^{*} and C^{*}

$$
\begin{align*}
& N^{*}=100-\left[L^{*}+0,5 C^{*}\right] \tag{4}\\
& W^{*}=L^{*}-0,5 C^{*} \tag{5}
\end{align*}
$$

All colorimetric colour systems use three colour attributes for the specifications of colours. Most colour systems use the hue as the first and most important colour attribute and distinguish in the choice of the two others. In the CIELAB system the attributes chroma C^{*} ab and lightness L* are preferred. In the Swedish Natural Colour Systems NCS instead of the lightness L^{*} the blackness N^{*} is used.

According to the experimental results of Evans (1974) the colours of equal blackness N^{*} are located in the CIELAB colour space on a line independent of hue described by

$$
\begin{equation*}
N^{*}=100-\left[L^{*}+0,5 C_{a b}^{*}\right] \quad\left(L^{*}, C_{a b}^{*} \text { of CIELAB }\right) \tag{6}
\end{equation*}
$$

Remark: This corresponds to $N^{*}=10\{10-[V+C]\}$ with $V=$ Value and $C=$ Chroma of the Munsell system which has been studied by Evans (1974).

In many cases the colour difference of the 5 steps between black N and white W and the 5 steps between the six chromatic colours $X=R J G C^{\prime} B M^{\prime}$ and both Black N and White W should be equally spaced in CIELAB, compare Fig. 1 .

For many example files with 5 and 16 step colour scales in up to 10 hue planes see the URL
http://www.ps.bam.de/RLAB00E

In applications observers often evaluate the colours relative to a given media Black N and White W and a most chromatic colour an observer has in mind. In this case relative colour attributes, for example relative blackness n^{*}, relative lightness I^{*}, relative chroma c^{*} and other may be appropriate.

Therefore in applications instead of the absolute data $N^{*}, I^{*}, W^{*}, D^{*}, L^{*}$ and C^{*} (capital letters) often the relative data $n^{*}, i^{*}, w^{*}, d^{*}, l^{*}$ and c^{*} (small letters) are used.

The relative colour attributes, for example relative blackness n^{*} and relative chroma c^{*}, and the linear relations to the CIELAB data $L C H^{*}$ are described in this technical report.

A description of many other visual attributes which may be described by the coordinates of this report, for example absolute and chromatic thresholds, colour differences at threshold for adjacent and separate colour samples in a gray background is beyond the scope of this report, see for example Richter (2006a, b, c)

2. Three modifications of the reference system SRS00 for applications

There are three modification of the reference system SRS00 with the CIELAB $L C H^{*}$ data ($L^{*}=$ $50, C^{*}$ ab $=100, h_{\mathrm{ab}}=30,90,150,210,270,330$). Six modified hue angles $26,92,162,217$, 272 and 329 seem to be more appropriate according to different experimental results for the elementary hues. This system is called the Natural Reflective System NRS00. The value 00 is used for the lightness $L^{*}{ }_{N}=0$ for black N. In ISO/IEC 15775 for practical applications the lightness $L^{*} N=18,01$ and $L^{*}{ }_{W}=95.41$ is used as reference for media Black N and White W. In the reference system SRS00 the chroma is equal to the lightness difference between White W and Black N. Therefore in the application case according to ISO/IEC 15775 the CIELAB chroma $C^{*}{ }_{a b}$ reduces from 100 to 77,4.

As a result three modifications of the reference system SRS00 will be studied. SRS18 with a reduced chroma and NRS100 and NRS18 both with changed elementary hues compared to SRS00 and SRS18.

We will study both absolute CIELAB data $L C H^{*}=\angle A B^{*} L C H^{*}$ and relative CIELAB data nce* $=$ $l a b^{*} n c e^{*}$ and $r g b^{*}{ }_{3}=l a b^{*} r g b^{*}{ }_{3}$.

Figure 2: Relative CIELAB $\left(a_{r}^{*}, b^{*}\right)$ diagram of four systems
Figure 2 shows the relative CIELAB (a_{r}^{*}, b_{r}^{*}) diagram of four systems NRS00, SRS00, NRS 18 and SRS18. In Fig. 2 both the systems NRS00 and NRS18 as well as SRS00 and SRS18 are equal. The systems SRS00 and SRS18 use the standard 60-degree hue angle difference and the systems NRS00 and NRS18 the elementary hue angles of the CIE-test colours no. 9 to 12 of CIE 13.3 (Colour Rendering) for CIE illuminant D65.

Natural reflective system: NRS18

Standard reflective system: SRS18

Figure 3: Relative $\operatorname{rg} b^{*}{ }_{3}$ data of four systems NRS00, SRS00, NRS18 and SRS18
Figure 3 shows the relative $\operatorname{rgb}{ }_{3}$ coordinates of the four systems NRS00, SRS00, NRS18 and SRS18. Both the systems NRS00 and NRS18 and SRS00 and SRS18 are equal in Fig. 3, which uses relative (r) coordinates $\left(a_{r}^{*}, b_{r}^{*}\right.$) and lab* ${ }^{*} g b_{3}^{*}$.

CIELAB data $L C H_{M}^{*}$ of maximal colours M of the four systems: NRS00, SRS00, NRS18, SRS18
Natural reflective system: NRS00 Standard reflective system: SRS00

Figure 4: $L C H^{*}{ }_{M}$ data in CIELAB (a^{*}, b^{*}) diagram of four systems

Figure 4 shows the $L C H^{*}$ data of maximum colours M in the $\operatorname{CIELAB}\left(a^{*}, b^{*}\right)$ chroma diagram for the four systems NRS00, SRS00, NRS18 and SRS18. Both the systems NRS00 and SRS00 have the larger chroma of the value 100 compared to NRS18 and SRS18 with the chroma of the smaller value 77,4 .

Figure 5: $\boldsymbol{n c h}{ }^{*}{ }_{\mathrm{M}}$ data of maximum colours \boldsymbol{M} in the relative CIELAB $\left(\boldsymbol{a}_{\mathrm{r}}^{*}, \boldsymbol{b}_{\mathrm{r}}{ }_{\mathrm{r}}\right.$) diagram Figure 5 shows the $n c h_{M}^{*}$ data of maximum colours M in the relative CIELAB $\left(a_{r}^{*}, b_{r}^{*}\right)$ diagram for the four systems NRS00, SRS00, NRS18 and SRS18. Both the systems NRS00 and NRS18 and SRS00 and SRS18 are equal in Fig. 5 which use relative (r) coordinates (a_{r}^{*}, b_{r}^{*}) and includes the lab* $n c h^{*}$ data.

3. Relative coordinates $r g b^{*}{ }_{3}$ or $n c e^{*}$ and linear relation to CIELAB $L^{\prime} C H^{*}$

Colours can be specified by three coordinates for example in CIELAB by two sets of equivalent data L^{*}, a^{*} and $b^{*}\left(L A B^{*}\right)$ or L^{*}, C^{*} ab and $h_{\mathrm{ab}}\left(L C H^{*}\right)$. In the following the set L^{*}, C^{*} ab and h_{ab} is preferred and we call this set $L C H^{*}$.

Two new sets of coordinates rgb* ${ }_{3}$ and $n c e^{*}$ will be defined by linear relations to the CIELAB $L C H^{*}$ data. A graphical relationship is shown first and later the equations are given in all directions of the following list. Therefore we will study the following three cases:

Data set given
$L^{2} H^{*}$
rgb_{3}^{*}
nce*

Data sets to be calculated
$n c e^{*}, r g b_{3}^{*}$
$L_{C H}{ }^{*}$, $n c e^{*}$
$r g b^{*}, L C H^{*}$

Figure 6: Colour of a red hue in $\operatorname{CIELAB}\left(C^{*}{ }_{a b}, L^{*}\right)$ and relative (c^{*}, I^{*}) diagrams.
Figure 6 shows colours of a red hue in absolute CIELAB (C^{*} ab, L^{*}) diagrams (left) and in relative $\operatorname{CIELAB}\left(C^{*}, I^{*}\right)$ diagrams (right). The coordinates used are CIELAB chroma C^{*} ab, CIELAB lightness L^{*}, blackness N^{*} and whiteness W^{*} (left) and relative CIELAB chroma c^{*}, relative CIELAB lightness I^{*}, relative blackness n^{*} and relative whiteness w^{*} (right).

The following equations are valid with the lightness $L{ }^{*}$ and $L{ }^{*}$ w of Black N and White W :
relative lightness

$$
\begin{align*}
& I^{*}=\left[L^{*}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L_{\mathrm{N}}^{*}\right] \tag{1}\\
& c^{*}=C^{*}{ }_{\mathrm{ab}} / C^{*}{ }_{\mathrm{ab}, \mathrm{M}} \tag{2}\\
& \left.n^{*}=1-\left[I^{*}+0,5 c^{*}\right]\right]
\end{align*}
$$

relative chroma
relative blackness
Remark: If the lightness $L^{*}{ }_{M}$ of the maximum colour M is not equal to $0,5\left(L^{*}{ }_{\mathrm{W}}+L^{*}{ }_{\mathrm{N}}\right)$ then the relative triangle lightness t^{*} instead of the relative lightness I^{*} must be used in this equation, see the equations in Fig. 12.

$$
\begin{array}{ll}
\text { relative whiteness } & w^{*}=1-n^{*}-c^{*} \\
\text { blackness } & N^{*}=100 n^{*} \\
\text { whiteness } & W^{*}=100 w^{*}
\end{array}
$$

For the calculation of the intended relative coordinates $r g b_{3}^{*}$ and the elementary hue number e^{*} the CIELAB hue angle h_{ab} and its location relative to the elementary hues RJGB is necessary.
In a good approximation the four elementary hues are defined either by the six hue angles between 30 and 330 degrees or by the four CIE-test colours no. 9 to 12 of CIE 13.3 for RJGB and the intermediate hues $\mathrm{C}^{\prime}=\mathrm{g} 50 \mathrm{~b}$ and $\mathrm{M}^{\prime}=\mathrm{b} 50$ r.

Elementary colour and CIE illuminant		CIELAB data, CIE tristimulus values and CIE chromaticity for the CIE standard illuminant D65 and D50 and the 2 degree observer									
CIE-test colour	Ill.	L	a		$C^{*} \mathrm{ab}$		X	\boldsymbol{Y}	Z	x	y
09, Red R	D65	40,04	58,98	28,32	65,43	25,	20,64	11,27	4,34	0,5693	
10, Yellow J		81,30	-2,99	71,82	71,89	92,4	54,89	59,01	12,02	0,4359	0,4686
11, Green G		52,27	-42,40	13,64	44,54	162,2	12,15	20,38	15,34	0,2538	0,4258
12, Blue B		30,52	1,21	-46,35	46,37	271,5	6,24	6,45	27,59	0,1550	0,1601
09, Red R	D5	41,88	62,00	31,82	69,69	27,2	23,31	12,42	3,24	0,5982	0,3188
10, Yellow J		81,97	1,81	71,59	71,61	88,5	58,84	60,24	9,50	0,4576	0,4685
11, Green G		51,62	-41,12	11,52	42,70	164,4	12,10	19,81	11,95	0,2759	0,4515
12, Blue B		29,20	-5,28	-49,34	49,62	63,9	5,25	5,92	21,25	0,1621	0,1825

Figure 7: CIELAB data of CIE-test colours for CIE standard illuminant D65 and D50
Figure 7 shows CIELAB data and other CIE data of the CIE-test colours no. 9 to 12 for the CIE standard illuminant D65 and the CIE illuminant D50.

The CIELAB hue angles of the elementary colours are $h_{\mathrm{ab}}=25,7,92,4,162,2$ and 271,5 degree. In some cases hue angles and CIELAB values which are intermediate between Green G and Blue B and intermediate between Blue B and Red R are necessary. These two colours are called Cyan blue dash $\mathrm{C}^{\prime}=\mathrm{g} 50 \mathrm{~b}$ an Magenta red dash $\mathrm{M}^{\prime}=\mathrm{b} 50$ r.

In a first good approximation the hue angles of the six colours are located on a regular hexagon with 60 degree difference in the $\operatorname{CIELAB}\left(a^{*}, b^{*}\right)$ chroma diagram. For a better agreement with visual data instead of the hue angles between 30 and 330 the elementary hue angles 26, 92, 162, 217, 272 and 329 are used.

Elementary colours RJGB
2 mixed colors $C^{\prime}=g 50 b, M^{\prime}=b 50 r$
ZE230-5

Elementary colours RJGB
2 mixed colors $C^{\prime}=g 50 \mathrm{~b}, \mathrm{M}^{\prime}=\mathrm{b} 50 \mathrm{r}$

Elementary colours RJGB
2 mixed colors $C^{\prime}=\mathbf{g} 50 \mathrm{~b}, \mathrm{M}^{\prime}=\mathrm{b} 50 \mathrm{r}$

Elementary colours RJGB
2 mixed colors $C^{\prime}=\mathbf{g} 50 \mathrm{~b}, \mathrm{M}^{\prime}=\mathrm{b} 50 \mathrm{r}$

Figure 8: Absolute and relative CIELAB chroma data of systems SRS18 and NRS18

Figure 8 shows the absolute and relative CIELAB chroma data of the systems SRS18 and NRS18. The hue angles of the system SRS18 are regular between 30 and 330 degree. The system NRS18 uses the hue angles 26, 92, 162, 217, 272 and 329 degrees. Fig. 8 includes 16 step colour series between White W and the six chromatic colours. The CIELAB colour difference between two adjacent steps is calculated as $\Delta E^{*}{ }_{a b}=4,62$.

4. Interpretation of the $\operatorname{rg} b^{*}{ }_{3}$ coordinates and linear relation to nicwd*

The elementary hues are used for the definition of the $r g b_{3}{ }_{3}$ coordinates. The $r g b^{*}{ }_{3}$ data have the three values 100,010 and 001 for the maximum colours $X=R, G$, B of the elementary hues Red R, Green G and Blue B.

Figure 9: $r g b^{*}{ }_{3}$ data and linear relation to relative blackness n^{*} and relative chroma c^{*} Figure 9 shows example $r g b^{*}$ data and the linear relation to relative blackness n^{*}, relative chroma c^{*}, relative whiteness w^{*}, relative brilliantness i^{*} and relative colour deepness d^{*}.

Fig. 9 shows in part 1 and 2 colours of the elementary hue Red R and in part 3 and 4 colours of the elementary hues Green G and Blue B.

5. Examples of user friendly colour notation $n c e^{*}$ and linear relation to $\mathrm{rgb}^{*}{ }_{3}$

The colour notation nce* is more user friendly compared to $r g b^{*}{ }_{3}$ and we will study the linear relation between $n c e^{*}$ and $r g b^{*}$. Additionally the transformation between the elementary hue number e^{*} and the elementary (unique) hue text u^{*} and the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{M}}=H_{\mathrm{M}}^{*}$ is given.

User friendly colorimetric colour notation $n c u^{*}$ or $n c e^{*}$ and linear relation to three rgb**3 data	
n * relative blackness c^{*} relative chroma u^{*} elementary (unique) hue text e^{*} elementary hue number $\begin{aligned} & n^{*}=0 \\ & c^{*}=0 \end{aligned}$ example for colour notation: $n c u^{*}=0,25 \quad 0,50 \quad$ 25j or $n c e^{*}=0,250,500,0625(=0,25 / 4)$	relative opponent (r^{*}, j^{*}) chroma diagram relative CIELAB (a^{*}, b_{r}^{*}) chroma diagram

Figure 10: Example nce ${ }^{*}$ data and relation to $r g b^{*}{ }_{3}$ data for the system SRS00
Figure 10 shows example $n c e^{*}$ data and both the relation to $r g b^{*}{ }_{3}$ data and to the CIELAB hue angle $H^{*}{ }_{\mathrm{M}}=h_{\mathrm{ab}, \mathrm{M}}$. The relation is equal for the systems SRS00 and SRS18. The n^{*} and c^{*} data define the largest and smallest value of the $r g b^{*}{ }_{3}$ data. In the case that the maximum colour M is located between R and J it is valid for the example:

$$
\begin{aligned}
r_{3}^{*} & =1-n^{*}=0,75 \\
g_{3}^{*} & =1-n^{*}-c^{*}+c^{*} 0,01 u_{n}^{*} \\
& =w^{*}+c^{*} g_{3, M}^{*}=0,25+0,500,25=0,375 \\
b_{3}^{*} & =1-n^{*}-c^{*} \\
& =w^{*}=0,25
\end{aligned}
$$

The number u^{*} changes between 00 and 99 for the hue series between elementary Red R ($u^{\star}=\mathrm{rO0j}$) and nearly Yellow J ($u^{*}=\mathrm{r} 99 \mathrm{j}$).
The value of $g_{3, M}^{*}$ of the Maximum colour M is equal to the elementary hue text number $u_{\mathrm{n}}^{*}=25$ divided by 100 . Above and in Fig. $12 g_{3}^{*}$ is calculated from w^{*}, c^{*}, and $g^{*}{ }_{3, \mathrm{M}}$.
The hue text number u_{n}^{*} is also used to calculate the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{M}}=H_{\mathrm{M}}^{*}$. In the example the CIELAB hue angle of M is located between the hue angles of R and J. Therefore it is valid

$$
h_{\mathrm{ab}, \mathrm{M}}=h_{\mathrm{ab}, \mathrm{R}}+0,01 u_{\mathrm{n}}^{*}\left[h_{\mathrm{ab}, \mathrm{~J}}-h_{\mathrm{ab}, \mathrm{R}}\right]=30+0,25[90-30]=45=H_{\mathrm{M}}^{*}
$$

Figure 11: Example nce* data and relation to $r g b^{*}{ }_{3}$ data for the system NRS00
Figure 11 shows example nce* data and both the relation to $r g b^{*}{ }_{3}$ data and to the CIELAB hue angle $H^{*}{ }_{\mathrm{M}}=h_{\mathrm{ab}, \mathrm{M}}$. The relation is equal for the systems NRS00 and NRS18. Compared to Fig. 10 the data $n c e^{*}$ data and the calculated $r g b^{*}{ }_{3}$ data are the same but the hue angle $h_{\mathrm{ab}, \mathrm{m}}$ has changed. In the example the CIELAB hue angle of M is located between the new hue angles of R and J. Therefore it is valid

$$
h_{\mathrm{ab}, \mathrm{M}}=h_{\mathrm{ab}, \mathrm{R}}+0,01 u_{\mathrm{n}}^{*}\left[h_{\mathrm{ab}, \mathrm{~J}}-h_{\mathrm{ab}, \mathrm{R}}\right]=25+0,25[92-25]=42=H_{\mathrm{M}}^{*}
$$

We conclude: According to the experimental results of Evans (1974) colours of cero relative blackness n^{*} and cero blackness N^{*} are located for all hues on a line which connects in the CIELAB space the white point $\left(C_{a b}^{*}, L^{*}\right)=(0,100)$ with the point $\left(C_{a b}^{*}, L^{*}\right)=(100,50)$.
In Fig. 10 and 11 an additional line connects the black point $\left(C^{*}{ }_{\mathrm{ab}}, L^{*}\right)=(0,0)$ with the point $\left(C^{*}{ }_{\mathrm{ab}}, L^{*}\right)=(100,50)$ and then a colour triangle in produced. The colour with the coordinate $\left(C^{*}{ }_{\mathrm{ab}, \mathrm{M},} L_{\mathrm{M}}^{*}\right)=(100,50)$ is called the maximum colour M. The CIELAB chroma and the CIELAB lightness of the six colours $R J G C^{\prime} B M$ is equal, therefore:
CIELAB chroma of maximum colour M

$$
\text { CIELAB lightness of maximum colour } M
$$

$$
\begin{aligned}
& C_{\mathrm{ab}, \mathrm{M}}^{*}=100 \\
& L_{\mathrm{M}}^{*}=50
\end{aligned}
$$

For any colour with any CIELAB chroma $C^{*}{ }_{a b}$ and any CIELAB lightness L^{*} of the same hue ($h_{\mathrm{ab}}=$ const) the equations (1) to (6) in section 3 are valid. These equations for example allow to calculate relative chroma c^{*}, relative lightness I^{*} and relative blackness n^{*}

6. Transformation between 3 sets of coordinates

We will transform between the three data sets $L C H^{*}, n c e^{*}, r g b_{3}^{*}$ in the following directions:

Data set given	Data sets to be calculated
$L C H^{*}$	$n c e^{*}, r g b_{3}^{*}$
$r g b_{3}^{*}$	$L C H^{*}, n c e^{*}$
$n c e^{*}$	$r g b_{3}^{*}, L C H^{*}$

Equations: colorimetric data transfer from $\mathbf{L C H}{ }^{*}$ (CIELAB) to $\boldsymbol{n c e}{ }^{*}$ and $\mathrm{rgb}^{*}{ }_{3}$		
Given: CIELAB data of any colour $L^{*}, C^{*}{ }_{\mathrm{ab}}, h_{\mathrm{ab}}=L C H^{*}=L A B^{*} L C H^{*}$ or L^{*}, a^{*}, b^{*} CIELAB data $L^{*} \mathrm{X}, C^{*}{ }_{\mathrm{ab}, \mathrm{X}}, h_{\mathrm{ab}, \mathrm{X}}, a^{*} \mathrm{X}, b^{*}{ }_{\mathrm{X}}$ of eigth basic colours $X=R J G C^{\prime} \boldsymbol{B M}^{\prime}{ }^{\prime} \mathrm{N}^{2} W$ Aim: $n c e^{*}$ and $r g b^{*}{ }_{3}$ elementary colour data of the given colour (in example M located between R and J)		
CIELAB Hue angle of maximum colour M	$h_{\mathrm{ab}, \mathrm{M}}=h_{\mathrm{ab}} \quad\left(0<=h_{\mathrm{ab}}\right.$	(1)
Relative device hue angle ratio of M	$\alpha_{\mathrm{M}}=\left[h_{\mathrm{ab}, \mathrm{M}}-h_{\mathrm{ab}, \mathrm{R}}\right] /\left[h_{\mathrm{ab}, \mathrm{J}}-h_{\mathrm{ab}, \mathrm{R}}\right]$	(2)
CIELAB data $L^{*}{ }_{\mathrm{M}}, a^{*}{ }_{\mathrm{M}}, b^{*}{ }_{\mathrm{M}}, C^{*}{ }_{\mathrm{ab}, \mathrm{M}}$ of M	$L^{*}{ }_{\mathrm{M}}=\alpha_{\mathrm{M}} L^{*}{ }_{\mathrm{J}}+\left(1-\alpha_{\mathrm{M}}\right) L^{*}{ }_{\mathrm{R}}$	(3)
	$a^{*}{ }_{\mathrm{M}}=\alpha_{\mathrm{M}} a^{*}{ }_{\mathrm{J}}+\left(1-\alpha_{\mathrm{M}}\right) a^{*}{ }_{\mathrm{R}}$	(4)
	$b{ }^{*}{ }_{\mathrm{M}}=\alpha_{\mathrm{M}} b^{*}{ }_{\mathrm{J}}+\left(1-\alpha_{\mathrm{M}}\right) b^{*} \mathrm{R}$	(5)
	$C^{*}{ }_{\mathrm{ab}, \mathrm{M}}=\left[a^{*} \mathrm{M}^{2}+b^{*} \mathrm{M}^{2}\right]^{1 / 2}$	(6)
relative lightness of the given colour	$l^{*}=\left[L^{*}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right]$	(7)
relative chroma of the given colour	$c^{*}=C^{*}{ }_{\mathrm{ab}} / C^{*}{ }_{\mathrm{ab}, \mathrm{M}}$	(8)
relative triangle lightness of the given colour	$t^{*}=l^{*}-\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*}\right.$	(9)
relative blackness of the given colour	$n^{*}=1-t^{*}-0,5 c^{*}$	(10)
relative whiteness of the given colour	$w^{*}=1-n^{*}-c^{*}$	(11)
elementary hue angle of the given colour	$e^{*}=$ function $\left[h_{\mathrm{ab}}\right] \quad$ (with ta	(12)
relative $r g b{ }^{3}{ }_{3, M}$ data of M	$r^{*}{ }_{3, \mathrm{M}}=\alpha_{\mathrm{M}} r^{*}{ }_{3, \mathrm{~J}}+\left(1-\alpha_{\mathrm{M}}\right) r^{*}{ }_{3, \mathrm{R}}$	(13)
	$g{ }_{3, \mathrm{M}}=\alpha_{\mathrm{M}} g^{*}{ }_{3, \mathrm{~J}}+\left(1-\alpha_{\mathrm{M}}\right) g^{*}{ }_{3, \mathrm{R}}$	(14)
	$b^{*}{ }_{3, \mathrm{M}}=\alpha_{\mathrm{M}} b^{*}{ }_{3, \mathrm{~J}}+\left(1-\alpha_{\mathrm{M}}\right) b^{*}{ }_{3, \mathrm{R}}$	(15)
relative $\mathrm{rgb}{ }_{3}$ data of the given colour	$r^{*}{ }_{3}=w^{*}+c^{*} r^{*}{ }_{3, \mathrm{M}}$	(16)
	$g^{*}{ }_{3}=w^{*}+c^{*} g^{*}{ }_{3, \mathrm{M}}$	(17)
	$b^{*}{ }_{3}=w^{*}+c^{*} b^{*}{ }_{3, \mathrm{M}}$	(18)

Figure 12: Transfer from LCH^{*} (CIELAB) data to $n c e^{*}$ and $r g b^{*}{ }_{3}$ data
Figure 12 shows the transformation between the $L C H^{*}$ (CIELAB) data and the relative data $n c e^{*}$ and $r g b^{*}$. Figure 12 is based on the assumption, that the eight CIELAB data of the six chromatic and the two achromatic colours $X=R J G C^{\prime} B M^{\prime} N W$ are given. The example assumes further that the given hue angle is between the hue angle of Red R and Yellow J. In other cases the colours R and J have to be replaced, for example by J and G.

Figure 13: Transfer from nce* data to $r g b^{*}{ }_{3}$ data and $L C H^{*}$ (CIELAB) data
Figure 13 shows the transformation from nce* to $\mathrm{rgb}^{*}{ }_{3}$ data and CIELAB $L C H^{*}$ data. The example assumes that the given hue angle defined by e^{*} is between the hue angle of Red R and Yellow J.

Figure 14: Transfer from $r g b^{*}{ }_{3}$ data to $n c e^{*}$ and $L C H^{*}$ (CIELAB) data

Figure 14 shows the transformation from $r g b_{3}{ }_{3}$ data to $n c e^{*}$ data and LCH^{*} (CIELAB) data.The example assumes that the given hue angle defined by $r g b^{*}$ is between the hue angle of Red R and Yellow J. In the case of a 60 degree system (either SRS00 or SRS18) the hue $h_{a b, M}$ of the maximum colour M is identical to $h_{\mathrm{ab}, \mathrm{s}}$ which is calculated by equations (4) to (6) in Fig. 14. In the case of the systems NRS00 and NRS18 the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{M}}$ of the maximum colour M may be taken either from a table with 360 entries for $h_{\mathrm{ab}, \mathrm{s}}$ and the corresponding hue angle $h_{\mathrm{ab}, \mathrm{M}}$ or the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{M}}$ may be calculated by equations, see Fig. 16.

Figures 12 to 14 are based on the assumption, that the eight CIELAB data of the six chromatic and the two achromatic colours $X=R J G C^{\prime} B M^{\prime} N W$ are given. The example assumes further that the given hue angle is between the hue angle of Red R and Yellow J. In the general case the location of the given hue angle has to be compared with the six hue angles of $X=R J G C^{\prime} B M^{\prime}$ and this defines the two neighbouring colours, for example G and C^{\prime}, to be used for the calculations according to the equations in Fig. 12. to 14.

7. Transformation between CIELAB hue $\boldsymbol{h}_{\mathrm{ab}}$ and elementary hue number \boldsymbol{e}^{*}

The transformation between the CIELAB hue h_{ab} and the elementary hue number e^{*} or the elementary hue angle $h_{\mathrm{ab}, \mathrm{e}}$ will be studied. It is appropriate to use either equations or tables for the transformation from h_{ab} to e^{*} or the inverse direction.

```
Equations: colorimetric transfer from CIELAB hue angle \(\boldsymbol{h}_{\mathrm{ab}}\) to elementary hue number \(\boldsymbol{e}^{*}\)
Given: CIELAB hue angle \(\boldsymbol{h}_{\mathrm{ab}}\left(0<=h_{\mathrm{ab}}<=360\right)\)
    CIELAB hue angles \(\boldsymbol{h}_{\mathrm{ab}, \mathrm{eX}}\) of four elementary colours \(\boldsymbol{e} \boldsymbol{X}=\boldsymbol{R J G B}\)
Aim: Elementary hue number \(\boldsymbol{e}^{*}\) of the given colour ( \(0<=e^{*}<=1\) )
Calculate elementary hue angle \(h_{\mathrm{ab}, \mathrm{e}}\) in one of five possible cases for \(h_{\mathrm{ab}}\left(0<=h_{\mathrm{ab}}<=360\right)\) :
If \(0<=h_{\mathrm{ab}}<h_{\mathrm{ab}, \mathrm{eR}} \quad h_{\mathrm{ab}, \mathrm{e}}=270+90\left[360+h_{\mathrm{ab}}-h_{\mathrm{ab}, \mathrm{eB}}\right] /\left[360+h_{\mathrm{ab}, \mathrm{eR}}-h_{\mathrm{ab}, \mathrm{eB}}\right]\)
If \(h_{\mathrm{ab}, \mathrm{eR}}<=h_{\mathrm{ab}}<h_{\mathrm{ab}, \mathrm{eJ}} \quad h_{\mathrm{ab}, \mathrm{e}}=0+90\left[h_{\mathrm{ab}}-h_{\mathrm{ab}, \mathrm{eR}}\right] /\left[h_{\mathrm{ab}, \mathrm{eJ}}-h_{\mathrm{ab}, \mathrm{eR}}\right]\)
If \(h_{\mathrm{ab}, \mathrm{eJ}}<=h_{\mathrm{ab}}<h_{\mathrm{ab}, \mathrm{eG}} \quad h_{\mathrm{ab}, \mathrm{e}}=90+90\left[h_{\mathrm{ab}}-h_{\mathrm{ab}, \mathrm{eJ}}\right] /\left[h_{\mathrm{ab}, \mathrm{eG}}-h_{\mathrm{ab}, \mathrm{eJ}}\right]\)
If \(h_{\mathrm{ab}, \mathrm{eG}}<=h_{\mathrm{ab}}<h_{\mathrm{ab}, \mathrm{eB}} \quad h_{\mathrm{ab}, \mathrm{e}}=180+90\left[h_{\mathrm{ab}}-h_{\mathrm{ab}, \mathrm{eG}}\right] /\left[h_{\mathrm{ab}, \mathrm{eB}}-h_{\mathrm{ab}, \mathrm{eG}}\right]\)
If \(h_{\mathrm{ab}, \mathrm{eB}}<=h_{\mathrm{ab}}<360 \quad h_{\mathrm{ab}, \mathrm{e}}=270+90\left[h_{\mathrm{ab}}-h_{\mathrm{ab}, \mathrm{eB}}\right] /\left[360+h_{\mathrm{ab}, \mathrm{eR}}-h_{\mathrm{ab}, \mathrm{eB}}\right]\)
Elementary hue number \(\quad e^{*}=h_{\mathrm{ab}, \mathrm{e}} / 360 \quad\left(0<=e^{*}<=1\right) \quad\) (6)
Inverse equations: transfer from elementary hue number \(\boldsymbol{e}^{*}\) to CIELAB hue angle \(\boldsymbol{h}_{\mathrm{ab}}\)
Given: elementary hue number \(\boldsymbol{e}^{*}\left(0<=e^{*<=1)}\right.\)
    CIELAB hue angles \(\boldsymbol{h}_{\mathrm{ab}, \mathrm{eX}}\) of four elementary colours \(\boldsymbol{e} X=\) RJGB
Aim: CIELAB hue angle \(\boldsymbol{h}_{\mathrm{ab}}\) of the given colour ( \(0<=h_{\mathrm{ab}}<=360\) )
Elementary hue angle \(\quad h_{\mathrm{ab}, \mathrm{e}}=360 e^{*} \quad\left(0<=e^{*}<=1\right) \quad\) (1i)
Calculate CIELAB hue angle \(h_{\mathrm{ab}}\) in one of four possible cases for \(e^{*}\left(0<=e^{*}<1\right)\) :
If \(0,00<=e^{*<0,25} \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{eR}}+\left[h_{\mathrm{ab}, \mathrm{e}} / 90\right]\left[h_{\mathrm{ab}, \mathrm{eJ}}-h_{\mathrm{ab}, \mathrm{eR}}\right]\)
If \(0,25<=e^{*<0,50} \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{eJ}}+\left[h_{\mathrm{ab}, \mathrm{e}} / 90-1,00\right]\left[h_{\mathrm{ab}, \mathrm{eG}}-h_{\mathrm{ab}, \mathrm{eJ}}\right]\)
If \(0,50<=e^{*<0,75} \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{eJ}}+\left[h_{\mathrm{ab}, \mathrm{e}} / 90-2,00\right]\left[h_{\mathrm{ab}, \mathrm{eG}}-h_{\mathrm{ab}, \mathrm{eJ}}\right]\)
If \(0,75<=e^{*}<1,00 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{eJ}}+\left[h_{\mathrm{ab}, \mathrm{e}} / 90-3,00\right]\left[h_{\mathrm{ab}, \mathrm{eG}}-h_{\mathrm{ab}, \mathrm{eJ}}\right]\)
    \(h_{\mathrm{ab}}=h_{\mathrm{ab}}-360 \quad 0<=h_{\mathrm{ab}}<=360\)
```

Figure 15: Transformation between CIELAB hue h_{ab} and elementary hue \boldsymbol{e}^{\star}
Figure 15 shows the equations for the transformation between the CIELAB hue angle h_{ab} and the elementary hue number e^{*} and in the inverse direction. The solution depends on different cases for the CIELAB hue angle $h_{\text {ab }}$ or the elementary hue number e^{*} in the inverse case, see Fig. 15.
8. Transformation between standard hue angle $\boldsymbol{h}_{\mathrm{ab}, \mathrm{s}}$ and CIELAB hue angle $\boldsymbol{h}_{\mathrm{ab}}$

```
Inverse equations: transfer from standard hue angle \(\boldsymbol{h}_{\mathrm{ab}, \mathrm{s}}\) to CIELAB hue angle \(\boldsymbol{h}_{\mathrm{ab}}\)
Given: standard hue angle \(h_{\mathrm{ab}, \mathrm{s}}\left(0<=\boldsymbol{h}_{\mathrm{ab}, \mathrm{s}}<=360\right)\)
            CIELAB hue angles \(\boldsymbol{h}_{\mathrm{ab}, \mathrm{s}, \mathrm{X}}\) of six standard colours \(s X=\) RJGC'BM'
Aim: CIELAB hue angle \(\boldsymbol{h}_{\mathrm{ab}}\) of the given colour ( \(0<=h_{\mathrm{ab}}<=360\) )
    Remark:
    The standard hue angle \(h_{\mathrm{ab}, \mathrm{s}}\) is usually calculated from the data \(r g b_{3}{ }_{3}\)
    relative red-green chroma in system s \(\quad a^{*}{ }_{\mathrm{rs}}=r^{*}{ }_{3} \cos (30)+g_{3}{ }_{3} \cos (150)\)
    relative yellow-blue chroma in system s \(\quad b *_{\mathrm{rs}}=r{ }_{3} \sin (30)+g_{3} \sin (150)+b *_{3} \sin (270)\)
    hue angle in standard system s \(\quad h_{\mathrm{ab}, \mathrm{s}}=\arctan \left[b^{*}{ }_{\mathrm{rs}} / a^{*}{ }_{\mathrm{rs}}\right]\)
Calculate CIELAB hue angle \(h_{\mathrm{ab}}\) in one of seven possible cases for \(h_{\mathrm{ab}, \mathrm{s}}\left(0<=h_{\mathrm{ab}, \mathrm{s}}<360\right)\) :
If \(0<=h_{\mathrm{ab}, \mathrm{s}}<30 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}^{\prime}}+\left[h_{\mathrm{ab}, \mathrm{s}^{2}}+360-h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}^{\prime}}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{R}^{2}}+360-h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}^{\prime}}\right] / 60\) (1i)
If \(30<=h_{\mathrm{ab}, \mathrm{s}}<90 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{R}}+\left[h_{\mathrm{ab}, \mathrm{s}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{R}}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{J}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{R}}\right] / 60\)
If \(90<=h_{\mathrm{ab}, \mathrm{s}}<150 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{J}}+\left[h_{\mathrm{ab}, \mathrm{s}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{J}}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{G}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{J}}\right] / 60\)
If \(150<=h_{\mathrm{ab}, \mathrm{s}}<210 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{G}}+\left[h_{\mathrm{ab}, \mathrm{s}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{G}}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{C}},-h_{\mathrm{ab}, \mathrm{s}, \mathrm{G}}\right] / 60\)
If \(210<=h_{\mathrm{ab}, \mathrm{s}}<270 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{C}}{ }^{\prime}+\left[h_{\mathrm{ab}, \mathrm{s}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{C}}{ }^{\prime}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{B}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{C}}{ }^{\prime}\right] / 60\)
If \(270<=h_{\mathrm{ab}, \mathrm{s}}<330 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{B}}+\left[h_{\mathrm{ab}, \mathrm{s}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{B}}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}},-h_{\mathrm{ab}, \mathrm{s}, \mathrm{B}}\right] / 60\)
If \(330<=h_{\mathrm{ab}, \mathrm{s}}<360 \quad h_{\mathrm{ab}}=h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}^{\prime}+360+\left[h_{\mathrm{ab}, \mathrm{s}}-h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}^{\prime}}\right]\left[h_{\mathrm{ab}, \mathrm{s}, \mathrm{R}}+360-h_{\mathrm{ab}, \mathrm{s}, \mathrm{M}},\right] / 60 \text { (7i) }}\)
only if \(h_{\mathrm{ab}}>=360\) then: \(\quad h_{\mathrm{ab}}=h_{\mathrm{ab}}-360 \quad 0<=h_{\mathrm{ab}}<=360 \quad\) (8i)
```

Figure 16: Transformation between standard hue angle $\boldsymbol{h}_{\mathrm{ab}, \mathrm{s}}$ and CIELAB hue angle $\boldsymbol{h}_{\mathrm{ab}}$ Fig. 16 shows the transformation equations between the standard hue angle $h_{\mathrm{ab}, \mathrm{s}}$ and the CIELAB hue angle h_{ab}.

The equations of Fig. 16 are only necessary, if the $r g b^{*}{ }_{3}$ data are given in the systems NRS00 or NRS18 with a non regular hue angle distribution. For NRS00 or NRS18 the hue angles are 26, 162 and 272 degrees for the elementary hues Red R, Green G and Blue B. In the regular case of the systems SRS00 or SRS18 the hue angles are 30, 150 and 270 degrees for the elementary hues Red R, Green G and Blue B. In this case the hue angle $h_{\mathrm{ab}, \mathrm{s}}$ is identical to the CIELAB hue angle $h_{a b}$. It is valid in this case:

$$
h_{\mathrm{ab}, \mathrm{~s}}=h_{\mathrm{ab}} \quad \text { (for SRS00 and SRS18) }
$$

Special tables include all three hue angles $h_{\mathrm{ab}}, h_{\mathrm{ab}, \mathrm{e}}$ and $h_{\mathrm{ab}, \mathrm{s}}$ for the four systems (N/S)RS00 and (N/S)RS18 with a hue difference of $\Delta h_{\mathrm{ab}}=10$, see the URL (1 page, 50 kByte)

http://www.ps.bam.de/ZE22/10L/L22E00NP.PDF

According to Miescher (1969) the standard deviation for the determination of the elementary hues is four steps, if a 400 step hue circle of a mean high chroma $C^{*}{ }_{a b}$ about 80 is used. Therefore the use of three tables with the hue angle differences of $\Delta h_{\mathrm{ab}}=1, \Delta h_{\mathrm{ab}, \mathrm{e}}=1$ and $\Delta h_{\mathrm{ab}, \mathrm{e}}=1$ is appropriate for all applications.

For the hue tables for the systems SRS18 and SRS00 see the URL (4 pages, 130 kByte)
http://www.ps.bam.de/ZE24/10L/L24E00NP.PDF
For the hue tables for the systems NRS18 and NRS00 see the URL (4 pages, 130 kByte)
http://www.ps.bam.de/ZE25/10L/L25E00NP.PDF

9. Summary

Linear equations are shown which transform from absolute CIELAB $L C H^{*}$ data to relative CIELAB nce* and $r g b^{*}{ }_{3}$ data if the CIELAB $L C H^{*}$ data of eight reference colours are given. There are inverse transformations and therefore the coordinates $n c e^{*}$ and $r g b^{*}{ }_{3}$ are device independent. The coordinates $n c e^{*}$ describe visual properties like relative blackness n^{*}, relative chroma c^{*}, and the elementary hue number e^{*}.

K. Richter, Relative CIELAB data $n c e *$ and $r g b^{*}{ }_{3}$ based on eigth CIELAB reference colours

10. References

CIE 13.3:1995, Method of measuring and specifying colour rendering of light sources
CIE 15: 2004, Colorimetry, 3rd edition
CIE 170-1:2006, Fundamental chromaticity diagram with physiological axes - Part 1
CIE 142:2001: Improvement to industrial colour difference evaluation (includes CIEDE2000)
Evans, R. M. (1974), The perception of colour, John Wiley, New York, ISBN 0-471-24785-5
Hurvich, L.M. (1981), Colour vision, Sinauer Associates Inc. Massach., ISBN 0-87893-337-9
ISO/IEC 15775:1999, Information Technology - Office Systems - Method for specifying image reproduction of colour copying machines by analog test charts - Realisation and application,
Miescher, K. (1969), The natural colour conception serving as base for elementary colour teaching, AIC Colour 69, Stockholm, Musterschmidt, p. 1231-1241
Natural Colour System NCS (1982), Svensk Standard SS 0191 0:1982, Colour notation system - SS 0191 01:1982, CIE tristimulus values and trichromatic co-ordinates for some 16 000 colour notations according to SS 019100 - SS 0191 02:1982, Colour atlas - SS 0191 02:1982, CIE tristimulus values and chromaticity co-ordinates for colour samples in SS 0191 02

Ostwald, W, (1930), Die Farbenfibel, Leipzig, Unesma
Richter, K. (1971), Description of colour attributes and colour differences, In: Color Metrics, AIC, Soesterberg, TNO, 134-146
Richter, K. (1980), Cube root color spaces and chromatic adaptation, Color Res. and Appl. 5, no. 1, pp. 25-43
Richter, K. (1996), Computergrafik und Farbmetrik, Farbsysteme, PostScript, geräteunabhängige CIE-Farben, VDE-Verlag, Berlin, ISBN 3-8007-1775-1, 288 pages including CD-ROM and about 500 pictures in colour, see http://www.ps.bam.de/buch

Richter, K. (2006a), Relation of Weber law and Stevens law at achromatic threshold, see (11 pages, 200 kByte)
http://www.ps.bam.de/BAMAT.PDF
Richter, K. (2006b), Device dependent linear relative CIELAB data lab* and colorimetric data for corresponding colour input and output on monitors and printers, CIE Symposium, 75 years colorimetric observer, Ottawa/Canada, CIE x030:2006, pp. 129-135
Richter, K. (2006c), Symmetric Colour Vision Model LMSLAB for Elementary Colours and Chromatic Adaptation, see (29 pages, 1.5 Mbyte) the URL
http://www.ps.bam.de/VISE06.PDF
Valberg, A. and Holtsmark, T. (1971), Similarity between JND-curves for complementary optimal colours, In: Color Metrics, AIC, Soesterberg, TNO, 58-68
Valberg, Arne (2005), Light Vision Color, John Wiley \& Sons, ISBN 0-470-84903-7, 462 pages.

[^0]
[^0]: Author and address:
 Prof. Dr. Klaus Richter
 Federal Institute for Materials Research and Testing (BAM), BAM VIII. 1
 Unter den Eichen 87, D-12200 Berlin, Germany
 Tel. +49 30 8104-1834/-3589, Fax -1807
 email: klaus.richter@mac.com and/or klaus.richter@bam.de

