## Equations: colorimetric data transfer from $\mathrm{LCH}^{*}$ (CIELAB) to nce $^{*}$ and olv**

Given: adapted CIELAB data of any colour $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}=$ LCH $^{*}{ }_{\mathrm{a}}=L A B^{*} L C H^{*}{ }_{\mathrm{a}}$
adapted CIELAB data $L^{*}, C^{*}{ }_{\text {ab,a, }}, h_{\text {ab,a, }}, a^{*}, b^{*}{ }_{\mathrm{a}}$ of eigth basic colours $X=$ OYLCVMNW Aim: $n c e^{*}$ and $r g b$ device data $o l v_{3}{ }_{3}$ of the given colour
hue angle of of the given colour and of $M$ CIELAB LCH $^{*}{ }_{\mathrm{a}, \mathrm{M}}$ data of maximum colour $M$
relative lightness of the given colour relative chroma of the given colour relative triangle lightness of the given colour relative blackness of the given colour relative whiteness of the given colour elementary hue angle of the given colour relative $o l v{ }^{*}{ }_{3, \mathrm{M}}$ data of maximum colour $M$
relative $o l v$ " 3 data of the given colour
$h_{\text {ab,a }}=H^{*}$
$L^{*} \mathrm{M}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right] \quad$ (with table/equation) $C^{*}$ ab,a,M$=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$ (with table/equation) $h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=h_{\mathrm{ab}, \mathrm{a}}$
$l^{*}=\left[L^{*}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right]$
$c^{*}=C^{*}{ }_{\mathrm{ab}, \mathrm{a}} / C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$
$t^{*}=l^{*}-\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right] c^{*}+0,5 c^{*}$
$n^{*}=1-t^{*}-0,5 c^{*}$
$w^{*}=1-n^{*}-c^{*}$
$e^{*}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$
$o^{*} 3, \mathrm{M}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$
$l^{*}{ }_{3, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$
$v^{*}{ }_{3, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$
$o^{*} 3=w^{*}+c^{*} o^{*} 3, \mathrm{M}$
$l^{*}{ }_{3}=w^{*}+c^{*} l^{*}{ }_{3, \mathrm{M}}$
$v^{*}{ }_{3}=w^{*}+c^{*} v^{*}{ }_{3, \mathrm{M}}$
(with table or equation) (10) (with table/equation) (11) (with table/equation) (with table/equation)

| Equations: colorimetric data transfer from nce* to $\mathrm{olv}^{*}{ }_{3}\left(\mathrm{rgb}\right.$ data) and $\mathrm{LCH}_{\text {a }}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Given: $\boldsymbol{n c} \boldsymbol{e}^{*}$ data (similar NCS) of any colour $\boldsymbol{n c} e^{*}=\operatorname{lab} \boldsymbol{b}^{*} \boldsymbol{n c} e^{*}\left(0<=n^{*}, c^{*}, e^{*}<=1\right)$ adapted CIELAB data $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}, a^{*}{ }_{\mathrm{a}}, b^{*}{ }_{\mathrm{a}}$ of eigth basic colours $X=$ OYLCVMNW <br> Aim: rgb device data olv $^{*}{ }_{3}$ and $L$ CH $^{*}{ }_{\mathrm{a}}$ of the given colour |  |  |  |
| elementary hue number of a colour | $e^{*}$ | ( $0<=e^{*}<=1$ ) | 1) |
| CIELAB hue angle of colour and maximum colour $M$ relative whiteness of the given colour relative triangle lightness of the given colour olv*3, M data of maximum colour $M$ | $h_{\text {ab,a }}=$ function $\left[e^{*}\right]$ | (with table/equation) | 2) |
|  | $w^{*}=1-n^{*}-c^{*}$ |  | ${ }^{3)}$ |
|  | $t^{*}==1-n^{*}-0,5 c^{*}$ |  | 4) |
|  | $o^{*} 3, \mathrm{M}=$ function $\left[h_{\text {ab,a }}\right]$ | (with table/equation) | (5) |
| relative $\mathrm{olv}{ }^{*} 3$ data of the given colour | $l^{*} 3, \mathrm{M}=$ function $\left[h_{\text {ab,a }}\right]$ | (with table/equation) | (6) |
|  | $v^{*} 3, \mathrm{M}=$ function $\left[h_{\text {ab,a }}\right]$ | (with table/equation) | (7) |
|  | $o^{*}{ }_{3}=w^{*}+c^{*} o^{*} 3, \mathrm{M}$ |  | 8) |
|  | $l^{*}{ }_{3}=w^{*}+c^{*} l^{*} 3, \mathrm{M}$ |  | (9) |
|  | $v^{*}{ }_{3}=w^{*}+c^{*} v^{*}{ }_{3, \mathrm{M}}$ |  | (10) |
| adapted CIELAB LCH $^{*}{ }_{\mathrm{a}, \mathrm{M}}$ data of maximum colour $M$ | $L^{*} \mathrm{M}=$ function $\left[h_{\text {abba }}\right]$ | (with table/equation) | (11) |
|  | $C^{*}$ ab,a,M $=$ function $\left[h_{\text {ab,a }}\right.$ | (with table/equation) | (12) |
|  | $h_{\text {ab,a, }, ~}^{\text {m }}=h_{\text {abb,a }}$ |  | (13) |
| relative lightness of maximum colour M relative lightness of the given colour adapted CIELAB LCH ${ }_{\mathrm{a}}$ data of the given colour | $l^{*} \mathrm{M}=\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}\right.$ | $\left.-L^{*} \mathrm{~N}\right]$ | (14) |
|  | $l^{*}=t^{*}+l^{*} \mathrm{M} c^{*}+0,5 c^{*}$ |  | (15) |
|  | $L^{*}=l^{*}\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right]+L^{*}$ |  | (16) |
|  | $C^{*}{ }_{\text {ab,a }}=c^{*} C^{*}{ }_{\text {ab,a,M }}$ |  | (17) |
|  | $h_{\text {ab,a }}=h_{\text {ab,a,M }}$ |  | (18) |

## Equations: colorimetric data transfer from olv $^{*}{ }_{3}$ to nce $^{*}$ data and LCH $^{*}{ }_{\mathrm{a}}$ data Given: rgb device data of any colour $\mathrm{olv}^{*}{ }_{3}=\mathrm{lab}^{*} \mathrm{olv}^{*_{3}}$ <br> adapted CIELAB data $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}, a^{*}{ }_{\mathrm{a}}, b^{*}{ }_{\mathrm{a}}$ of eigth basic colours $X=O Y L C V M N W$

 Aim: $n c e^{*}=l a b^{*} n c e^{*}\left(\right.$ similar to NCS data) and $L C H^{*}{ }_{\mathrm{a}}$ data of the given colour ( $0<=e^{*}<=1$ ) relative chroma of the given colour relative blackness of the given colour relative triangle lightness of the given colour relative red-green chroma in 60 degree system s relative yellow-blue chroma in 60 degree system s hue angle in 60 degree system sCIELAB hue angle in device system elementary hue number of the given colour adapted CIELAB CCH $^{*}$ a data of maximum colour $M$
relative lightness of maximum colour $M$
relative lightness of the given colour adapted CIELAB LCH $_{\mathrm{a}}$ data of the given colour
${ }^{*}=\max \left[\right.$ olv $\left._{3}\right]-\min \left[\right.$ olv $\left._{3}\right]$
$n^{*}=1-\max \left[\right.$ olv $\left._{3}\right]$
${ }^{*}=1-n^{*}-0,5 c^{*}$
$a^{*}{ }_{\mathrm{rs}}=o^{*} 3 \cos (30)+l^{*} 3 \cos (150)$
$b^{*}{ }_{\mathrm{rs}}=o^{*}{ }_{3} \sin (30)+l^{*}{ }_{3} \sin (150)+v^{*}{ }_{3} \sin (270)$
$h_{\mathrm{ab}, \mathrm{s}}=\arctan \left[b_{\mathrm{rs}}^{*} / a_{\mathrm{rs}}^{*}\right] \quad\left(0<=h_{\mathrm{ab}, \mathrm{s}}<=360\right) \quad$ (6) $h_{\mathrm{ab}, \mathrm{a}}=$ function $\left[h_{\mathrm{ab}, \mathrm{s}}\right]$ (with table/equation) $e^{*}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right] \quad$ (with table/equation) $L^{*} \mathrm{M}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right] \quad$ (with table/equation)
$C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$ (with table/equation)
$h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=h_{\mathrm{ab}, \mathrm{a}}$
$l^{*} \mathrm{M}=\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right]$
$l^{*}=t^{*}+l^{*} \mathrm{M}^{c^{*}}+0,5 c^{*}$
$L^{*}=l^{*}\left[L^{*} \mathrm{~W}^{-}-L^{*} \mathrm{~N}\right]+L^{*} \mathrm{~N}$
$C^{*}{ }_{\mathrm{ab}, \mathrm{a}}=c^{*} C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$
$h_{\mathrm{ab}, \mathrm{a}}=h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$

