ightness L*+ for surround mean grey Z (sRGB) For separated surface colours in the range 0.0036-cR-0.90 $L^0_Z = \alpha (R/R_a)^k$ [1] a=100; R.=1.00; k=0.42=1/2.4 $=b\left(R/R_{-}\right)^{k}$ [2] b=a(R./R.)k=50; R.=0.18 For R=R_n it is valid: L*_{Zn}=50. Derivation of equation [2] gives with 1-k = 0.58: $\delta(L^{n}_{Z})/\delta R = c (R/R_{n})^{1-k}$ [3] $c = (b k)/R_{n} = 21/18 = 1,17$ $\delta R = d (R/R_{-})^{1-k}$ [4] d = R . J(b|k) = 18/21 = 0.86For the surround lightness $L^{*}_{Z_{0}} = 50$ with $R = R_{0}$ the threshold is: $\delta R_{Zu} = 0.86$. This threshold is independent of k.

similar files: http://farbe.li.tu-berlin.de/BEU5/BEU5

nical information: http://farbe

or http:/

.HTM /color.li.tu-berlin.de

Lightness L*+ for surround mean grey Z (sRGB) For separated surface colours in the range 3.6<Y<90 or the digital range 100/255=0,39<Y<100 it is valid: [1] a=100; Y_=100; k=0.42=1/2.4 (2) b=a(Y,./Y,)k=50; Y,=18 For $Y=Y_n$ it is valid: $L^n_{Z_n}=50$ Derivation of equation [2] gives with 1-k = 0.58: $\delta(L^n_x)/\delta Y = c (Y/Y_n)^{1-k}$ [3] $c = (b k)/Y_n = 21/18 = 1,17$ [4] $d = Y_{-}/(b k) = 18/21 = 0.86$ or the surround lightness $L^{+}_{Z_{m}} = 50$ with $Y = Y_{m}$ the threshold is: $Y_{Zn} = 0.86$. This threshold is independent of k.

For adjacent surface colours in the range 0.0036 cR < 0.90 $L^{\alpha}_{\text{twn}} = a \left(R/R_{-} \right)^{k}$ [1] a=572; R.=1.00; k=0.14=1/7.2 $=b\left(R/R_{-}\right)^{k}$ [2] b=a(R./R.)k=450; R.=0.18 For $R=R_n$ it is valid: $L=_{DNDn}=450$. Derivation of equation [2] gives with 1-k = 0.86c $\delta(L^{+}_{1ND})/\delta R = c (R/R_n)^{1-k}$ [3] $c = (b k)/R_n = 63/18 = 3.5$ or for the treshold $\delta(L^n_{\mathrm{IND}})=1$ $\delta R = d (R/R_{-})^{1-k}$ [4] d=R.J(bk)=18/63=0.29 For the surround lightness L^{*}_{INDa} =450 with R= R_{a} the threshold i $R_{\text{sym}_{i}} = 0.29$. This threshold is independent of k.

Lightness L* JND for the Just Noticeable Difference (JND) For adjacent surface colours in the range 3.6<Y<90 or the digital range 100/255=0,39<Y<100 it is valid: [1] a=572; Y₀=100; k=0,14=1/7,2 [2] b=a(Y_/Y_)k=450; Y_=18 For $Y=Y_n$ it is valid: $L^n_{PNDn}=450$. Derivation of equation [2] gives with 1-k = 0.86: $\delta(L^{\pm}_{PND})/\delta Y = c (Y/Y_u)^{1-k}$ [3] $c = (b k)/Y_u = 63/18 = 3.5$ $\delta Y = d \left(Y/Y_{-} \right)^{1-k}$ [4] d = Y.J(b k) = 18/63 = 0.29 For the surround lightness $L^{*}_{INDa}=450$ with $Y=Y_{a}$ the threshold is

Lightness L v for surround black N For adjacent surface colours in the range 3.6<F<90 or the digital range 100/255=0,39<Y<100 it is valid: [1] a=100; Y_n=100; k=0,33=1/3,0 $L^a_{Y'} = a (Y/Y_-)^k$ $=b \left(Y/Y_{-}\right)^{k}$ [2] $b=a(Y_u/Y_p)^k=56$; $Y_u=18$ For Y=Y, it is valid: L=56. Derivation of equation [2] gives with 1-k = 0.67: $\delta(L^n)/\delta Y = c (Y/Y_n)^{1-k}$ [3] $c = (b k)/Y_n = 19/18 = 1.05$ or for the treshold & (** ...)=1 $\delta Y = d \left(Y/Y_{-} \right)^{1-k}$ [4] $d = Y_-/(b k) = 18/19 = 0.95$ For the surround lightness $L^{0}_{Nu} = 50$ with $Y=Y_{u}$ the threshold is:

 $\delta Y_{\infty} = 0.95$. This threshold is independent of k.

Lightness L*v for surround black N For adjacent surface colours in the range 3.6<L<90 or the digital range 100/255=0.39<L<100 it is valid: [1] a=100; L=142cd/m²; k=0.33 $L^{\alpha}_{\nu} = \alpha (L/L_{\nu})^{k}$ $=b\left(L/L_{-}\right)^{k}$ [2] b=a(L_/L_)k=56; L_=18 For $L=L_n$ it is valid: L=56. Derivation of equation [2] gives with 1-k = 0.67: $\delta(L_N)/\delta L = c (L/L_n)^{1-k}$ [3] $c = (b k)/L_n = 19/18 = 1.05$ or for the treshold $\delta(L^n_N)=1$ $\partial L = d (L/L_{-})^{1-k}$ [4] $d = L_{*}/(b k) = 18/19 = 0.95$ For the surround lightness $L^{0}_{Nn} = 50$ with $L=L_{n}$ the threshold is: $\delta L_{Nu} = 0.95$. This threshold is independent of k.

 $\delta R_{Wu} = 0.86$. This threshold is independent of k.

Lightness L*w for surround white W For adjacent surface colours in the range 3.6<Y<90 or the digital range 100/255=0,39<Y<100 it is valid: $L^{\alpha}_{w} = a (Y/Y_{w})^{k}$ [1] a=100; Y₁₀=100; k=0.50=1/2.0 $=b\left(Y/Y_{-}\right)^{k}$ (2) b=a(Y./Yw)k=42; Y.=18 For Y=Y_m it is valid: L*=42. Derivation of equation [2] gives with 1-k = 0.50:

 $\delta(L^n_W)/\delta Y = c (Y/Y_n)^{1-k}$ [3] $c = (b k)/Y_n = 21/18 = 1,17$ or for the treshold $\delta(L^n_W)=1$ $\delta Y = d \left(Y/Y_{-} \right)^{1-k}$ [4] $d = Y_-/(b k) = 18/21 = 0.86$

For the surround lightness $L^{*}_{W_{0}} = 50$ with $Y=Y_{0}$ the threshold is: $\delta Y_{w_{re}} = 0.86$. This threshold is independent of k.

Lightness L*w for surround white W For adjacent surface colours in the range 3.6<L<90 or the digital range 100/255=0,39<L<100 it is valid: [1] a=100: Lw=142cd/m²: k=0.50 $L^w_W = a (L/L_W)^k$ $=b(L/L_{-})^k$ [2] b=a(L_/L_w)k=42; L_=18 For L=L, it is valid: L==42. Derivation of equation [2] gives with 1-k = 0.50: $\delta(L^n w)/\delta L = c (L/L_n)^{1-k}$ [3] $c = (b k)/L_n = 21/18 = 1.17$

or for the treshold 8(I.*...)=1 $\delta L = d \left(L/L_{-} \right)^{1-k}$ [4] $d = L_{-} l(b k) = 18/21 = 0.86$ For the surround lightness $L^{*}_{W_0} = 50$ with $L=L_n$ the threshold is $\delta L_{u} = 0.86$. This threshold is independent of k.

input: reb/n

TUB-test chart BEU5; Viewing situations of colours in 3 surrounds N, Z, and W Lightness functions and derivations for separated and adjacent colours in three surrounds print output material: code=rha

display

g