Lightness L*IND for the Just Noticeable Difference (JND) For adjacent surface colours in the range 0.0036 < R < 0.90or the digital range $1/255=0.0039 \le R \le 1.00$ it is valid: $L_{\text{IND}}^* = a \left(\frac{R}{R_n} \right)^k$ [1] a=572; $R_{-}=1.00$; k=0.14=1/7.2 $= b (R/R_n)^k$ [2] $b=a(R_{u}/R_{u})^{k}=450; R_{u}=0.18$ For R=R_n it is valid: L*_{INDn}=450. Derivation of equation [2] gives with 1-k = 0.86: $\delta(L^*_{\text{IND}})/\delta R = c (R/R_n)^{1-k}$ [3] $c = (b k)/R_n = 63/18 = 3.5$ or for the treshold $\delta(L^*_{IND})=1$ $\delta R = d \left(R/R_{\rm p} \right)^{1-\rm k}$ [4] $d = R_{..}/(b k) = 18/63 = 0.29$ For the surround lightness $L^*_{INDn}=450$ with $R=R_n$ the threshold is $\delta R_{INDu} = 0,29$. This threshold is *independent* of k. CEA11-2N