Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours and two ranges $0.2 <= L_r <= 1$ and $1 <= L_r <= 5$					
The Weber-Fechner law describes the lightness L^a , as $\log \operatorname{arithmic}$ function of L_r . The Stevens law describes the lightness $L^a_{T,\mathrm{BLA}}$ as $\operatorname{potential}$ function of $L_r^{-1/5}$. IEC 61966-2-1 uses a similar potential function $L^a_{\mathrm{TE}} = m L_r^{-1/5} = 1$. The Weber-Fechner law is equivalent to the linear equation: $\Delta t_r = L_L (e-t_1)$. [1] Integration leads to the logarithmic equation: $L^a_r + L_h (\log L_r) (e-t_1)$. [2] Derivation leads for $\Delta L^a_r = 1$ to the linear equation: $L_r / \Delta L_r = 4$, $(\delta_0 = 46, k_1 = 63)$. [3] For colours in offices the standard contrast range is \$5:1=0.36.					
Table 1: CIE tristimulus value Y, luminance L, and lightnesses L*					
Colour (matte)	Tritimulus value	office luminance	relative luminance	CIE lightness	relative lightness
(contrast) (25:1=90:3,6)	Y	L [cd/m ²]	L _r =L/L _u	L* _{CIELAB} ~m L _r ^{1/2,4}	L_r^* = $k \log(L_r)$
White W (paper)	90 =18*5	142 =28,2*5	5	94 =50+44	44 =k ₁ log(5)
Grey Z (paper)	18	28,2	1	50	$0 = k_0 \log(1)$
Black N (paper)	3,6 =18/5	5,6 28,2/5	0,2	18 50-32	-32 = $k_0 \log(0,2)$
For the two lightness ranges it is $k_0=-32/\log(0.2)=46$ and $k_1=44/\log(5)=63$.					
CEA50-2N					