$F_{n}(x)$ ist das Linienelement der Funktion $f_{n}(x)$. Beide Funktionen sind auf fen Umfeldwert normiert $\frac{d[F_{\mathbf{u}}(x)]}{dx} = f_{\mathbf{u}}(x)$ [1]

Linienelementbeispiel für graue Farben $(0.2 \le x \le 5)$

 $F_{\mathbf{u}}(x) = \int \frac{f'_{\mathbf{u}}(x)}{f(x)} dx = \int \frac{\mathbf{b}}{1 + \mathbf{b} x} dx$ [2] Beispiel für $L^*(x)$ & ΔY mit $x=Y/Y_0$, $x_0=1$, b=6,141:

Beispiel für
$$L^*(x)$$
 & ΔY mit $x = Y/Y_{tb}$ $x_{ti} = 1$, b=6,141:
$$L^*(x) = \ln(1+bx)$$

$$L_{\mathbf{u}}^{*}(x) = \frac{L^{*}(x)}{L^{*}(x_{-})} = \frac{\ln(1+\mathbf{b}x)}{\ln(1+\mathbf{b})}$$
 [3]

$$L^*_{\mathbf{u}}(x) = \frac{E^*(x)}{L^*(x_{\mathbf{u}})} = \frac{\ln(1+bx)}{\ln(1+b)}$$
 [3]

$$L^*(\mathbf{x_u}) \quad \mathbf{m}(\mathbf{1}+\mathbf{b})$$

$$L^*(\mathbf{x_u}) \quad \Delta Y \quad \mathbf{1}+\mathbf{b}x$$

[4]

 $f_{\mathbf{u}}(x) = \frac{\Delta Y}{\Delta Y_{\mathbf{u}}} = \frac{1+\mathbf{b}x}{1+\mathbf{b}}$

CGA00-3N