Colorimetric supplement for DIN 33872-1 to -6

Prof. Dr. Klaus Richter, Berlin University of Technology, Section Lighting Technology Walterhoeferstrasse 44, D-14165 Berlin
Tel. +49 308450 9038; Fax +49 3084509040
Version 2.1: 2008-06-01
klaus.richter@mac.com
See also the web site of the BAM project group VIII.34, "Visual methods and colour reproduction"
http://www.ps.bam.de
For the German and English version of this paper see (1,4 MByte, 42 pages)
http://www.ps.bam.de/D33872-A.PDF
http://www.ps.bam.de/D33872-AE.PDF
For the PS and PDF test files in German and English of DIN 33872-1 to -6, see
http://www.ps.bam.de/33872
http://www.ps.bam.de/33872E
NOTE: There is an older German version of this paper belonging to the draft E DIN 33872-1 to 6:2007, see http://www.ps.bam.de/D33872_A.PDF
and PS and PDF test files belonging to the draft (D) E DIN 33872-1 to -6, see
http://www.ps.bam.de/33872D
http://www.ps.bam.de/33872DE

About the content of the standard series DIN 33872-1 to -6

The multipage standard series DIN 33872 "Information technology - Office machines - Method of specifying relative colour reproduction with YES/NO criteria" is valid for colour reproduction systems "digital - analog". The colour reproduction systems include for example the computer operating system and the application software for the analog output of a digital file with the devices

- printers;
- multifunctional devices;
- displays;
- data projectors.

The standard series describes a method for the specification of the relative colour reproduction properties of the output according to defined YES/NO criteria. The aim is the visual assessment of the output properties of these colour reproduction systems.
The standard series DIN 33872 "Information technology - Office machines - Method of specifying relative colour reproduction with YES/NO criteria" consists of:

- Part 1: Classification, terms and principles
- Part 2: Test charts for output properties - Testing of the discriminability of 5 and 16 step colour series
- Part 3: Test charts for output properties - Testing of equality for four equivalent grey definitions and discriminability of the 16 grey steps
- Part 4: Test charts for output properties - Testing of equality for two equivalent colour definitions with 5 and 16 step colour series
- Part 5: Test charts for output properties - Testing of elementary hue agreement and hue discriminability
- Part 6: Test charts for output properties - Testing of equivalent spacing and of the regular chromatic spacing

Part 1 includes Classification, terms and principles which are extended by this colorimetric amendment to DIN 33872-1 to -6. The DIN standard committee Information Technology "Office Systems" has decided at their meeting in March 2007 to publish this suplement in a separate paper in the internet on the above BAM server.
This allows a distribution free of charge and a long term presentation of this colorimetric suplement with many colour figures in the PDF file format and with low file size. With this method all colour figures can be presented in scalable vector graphics. Direct links in the PDF file to the test charts and to the colorimetric example calculations are realised and presented on the above BAM server.

Abstract

The colorimetric amendment for DIN 33872-1 to -6 includes in section 1 references to other standard documents of the section colour reproduction. In the sections 2 and 3 the colours are described which are used in television and in print as well as in colour order systems and in information technology. In the sections 4 to 6 the colorimetric standard-, adapted and relative CIELAB data of these fields are given. Section 7 shows calculation examples. Section 8 to 10 includes basic descriptions of the CIELAB colour system, of the colours of equal blackness and the four visual elementary hues RJGB as well as their special importance for user friendly coordinates in information technology. Section 11 shows in hue triangles the affine output strategy of DIN 33872 and other possibilities for the reproduction of the 16 step colour series with different output devices. Section 12 adds the colorimetric specifications of many outputs in DIN 33872 by an additional specification for the illuminants D50 and D65 with cmy input data of the same printer.

1. Standard documents in the field of colour image reproduction

Table 1 - Standard series DIN 33866 and application field

Input	Output	Input and output media and applications Input media	Output media	Application	Standard
analog	analog	DIN-test chart (hardcopy)	Hardcopy	Copier	DIN 33866-2
analog	digital	DIN-test chart (hardcopy)	File	Scanner	DIN 33866-4
digital	analog	DIN-test chart (file)	Hardcopy Softcopy	Printer Monitor	DIN 33866-3
DIN 33866-5					

Table 2 - International standards and technical reports which correspond to DIN 33866

Input	Output	Input and output media and applications Input media	Technical Report (TR) or Standard		
-	-	-	-	Basis	ISO/IEC TR 24705
analog	analog	ISO/IEC-test chart (hardcopy)	Hardcopy	Copier	ISO/IEC 15775
analog	digital	ISO/IEC-test chart (hardcopy)	File	Scanner	ISO/IEC TR 24705
digital	analog	ISO/IEC-test chart (file)	$\left\{\begin{array}{l}\text { Hardcopy } \\ \text { Softcopy }\end{array}\right.$	Printer Monitor	ISO/IEC TR 24705
ISO/IEC TR 24705					

The tables 1 and 2 show Standards and Technical Reports in which the equally spaced visual and colorimetric output is defined for equally spaced digital input data. The tables 1 and 2 show the relation between DIN 33866-1 to 5, ISO/IEC 15775, and ISO/IEC TR 24705.
DIN 33866 defines PS and PDF test files with digital cmyO input data for the printer output. However, increasingly rgb input data are used. The input data cmy0 and rgb show increasingly different output as the software and hardware not any more uses the "1-minus-relations" between cmy 0 and $r g b$ data. The " 1 -minus-relations", for example $c=1-r, m=1-g$, and $y=1-b$, are visually required and are defined linearly in PostScript. The outputs of these equivalent digital colour data show on some devices colorimetric differences of up to 30 CIELAB which may be compared with the difference of 75 CIELAB between black and white.
In ISO/IEC 15775 a colorimetric output tolerance of 3 CIELAB is defined. With many output devices a standard deviation of 1 CIELAB is reached. This corresponds to the visual discriminability. Output differences of up to 30 CIELAB for example can occur by the following sources: computer operating system, application software, device
driver, printer software and illuminant used for the colour assessment.
The output of the test files according to DIN 33872-1 to -6 results in device system colours which are created by the summary of the above five sources. The output is visually assessed and/or specified by colorimetry. This test is of advantage for both the user and the device manufacturer. If the device system colours are changed by the output then often the possible source of the change can be detected.
The test may help that user can produce a long term storage and output of digital colour data. The user gets a help to choose according to his wishes the appropriate computer operating system, application software, device driver, device system and illumination. A linearised output is a basis for the security of discriminabillity of defined colour differences which are included in the rgb or cmy test files according to DIN 33872-2 to -6.

Colorimetric supplement for DIN 33872-1 to -6

2. Colours in print and television

This section describes the colours which are used in print and television.

Part 3
YE720-3

Figure 1 - Colours OLV and CMY of television (TV) and print (PR) and elementary colours RJGB
Figure 1 part 1 (top left) shows the six colours OYLCVM of television (TV) and print (PR) according to ISO/IEC 15775. The hue series of the six chromatic colours $X=O Y L C V M$ is either shown in a colour hexagon or in a hue circle. For a constant hue the colours are usually shown in a colour triangle with black N and white W on the vertical axis. The presentation in a colour triangle corresponds to the experience of using colorants. In the application often the colours are mixed proportional with black N and white W, or with chromatic X and white W, or with chromatic X and black N. The hue angles are shifted here between the six colours by 60 degree starting with 30 degree. The hue
angles are assumed here to be equal for TV (Television) and PR (Print). The angles are in applications different depending on the monitor and print device. In figure 7 of section 6 the angles are shown for the standard processes CRT monitor (TV) and offset printing (PR).
The six chromatic device colours $X=O Y L C V M$ are device dependent. The visual human colour system uses four device independent elementary colours RJGB for the description of all hues. Many users wish a device independent hue output which limits the increasing device dependent colour output. These users expect that for the rgb input data with the values $(1,0,0),(0,1,0$,$) and (0,0,1)$ the three elementary colours red R, green G and blue B are produced in the device output. The elementary colour yellow J shall be produced with the colour values $(1,1,0)$. Therefore it is tested in DIN 33872 part 5 if a hue agreement with the elementary hue is reached.
In figure 1 (top right) the hue angle of the four elementary colours red R, yellow J, green G, and blue B is shown in the adapted CIELAB hue diagram ($a^{*}{ }_{a}, b^{*}$) in comparison to the chromatic device colours $X=O Y L C V M$. Often the elementary colours $R-G$ and $J-B$ are shown on the vertical and horizontal axis (see figure 1, part 3). The visual location is often given in percent, for example orange red $R(86 \%)$ and Yellow $J(14 \%)$ which may be specified by the abbreviation r14j, see figure 1, part 4. Figure 1 shows in part 3 to 6 equal hue cuts of the device colour pairs $O-C$, $Y-V$, and $L-M$ and includes the elementary hue text u^{*} for the standard offset printing process (PR) and the standard television monitor (TV).
The orange red colour O of the printing process is located according to figure 1, part 4, for PR at r19j and for TV near r14j. Orange red O of PR includes therefore 81% red R and 19% yellow J. Similar orange red O of TV includes 86% red R and 14% yellow J. Larger differences occur for cyan blue C with g68b for PR and g31b for TV. The difference in the adapted CIELAB hue diagram ($a^{*}{ }_{a}, b^{*}$) corresponds to a hue angle shift of about 30 degrees. A smaller hue difference (20 degree) between PR and TV is given for the colour magenta red M (see Figure 1, part 6). The hue differences between PR and TV for the colours C and M are much larger compared to the visual standard deviation of the elementary hue discriminability of real hue circles of colour order systems which is about 4 degrees.

Figure 2 - Elementary colours red R and green G as well as yellow J and blue B
Figure 2 shows the hue planes of the elementary colours red R and green G as well as yellow J and blue B together with the achromatic axis $N-W$.
The elementary colours play a special role in the visual human system. Every observer can easily name the elementary hues and identify them without any comparison colour, for example elementary Yellow J as neither reddish nor greenish. The Swedish Natural Colour System NCS (compare the Swedish standards SS 019100 to 03) uses the hue specification elementary hue text \boldsymbol{u}^{*} (for example r14j) with the four elementary colours as well as the colour attributes relative blackness \boldsymbol{n}^{*} and relative chroma \boldsymbol{c}^{\star} for the defined specifications of colours. The NCS colour order system includes about 1.500 colour samples. For their coordinates relative blackness \boldsymbol{n}^{*}, relative chroma \boldsymbol{c}^{*} and elementary hue text \boldsymbol{u}^{*} there are defined relations to the standard CIE system CIEXYZ in the Swedish Standards.
The most important and relevant colour attribute of the three colour attributes of NCS is the elementary hue. A symmetric hue circle with 20 steps and with the elementary hues on the horizontal and vertical axis is used in DIN 33872-5 for the test if there is elementary hue agreement in the output.
This property is of special importance for the users. During the last years more and more colour devices with different primary and secondary colours are produced and sold in the market. For CRT monitors the standard primary colour violet blue V is located at 305 degree instead of 272 for elementary blue in the adapted CIELAB hue

Colorimetric supplement for DIN 33872-1 to -6

diagram $\left(a^{*}{ }_{a}, b^{*}\right.$). This hue appears visually as strongly reddish blue. For newer LCD monitors the primary colour violet blue V is located more near the elementary blue. For new OLED monitors there may be a hue shift towards 240 degree which appear greenish blue. The hue angle difference between CRT and OLED monitors (305 and 240 degree) is 65 degree. This hue shift is similar as between elementary red and yellow (26 and 92 degree) and about 15 times larger compared to the standard deviation for the visual determination of the four elementary hues which is around 4 degrees.

3. User friendly colour image technology

Increasingly the colour image technology must consider the visual properties of colour vision. User friendliness is for example reached if the CIELAB hue angles of the elementary colours are considered. This is further reached by a simple and efficient coding with linear relationships between the colorimetric coordinates rgb*and $\boldsymbol{L}^{*}, \boldsymbol{a}^{*}, \boldsymbol{b}^{*}$ or \boldsymbol{L}^{*}, $\boldsymbol{C}^{*}{ }_{\mathrm{ab}}, \boldsymbol{h}_{\mathrm{ab}}$, of CIELAB.

Application of colour in daily life or in Colour Information Technology (IT)	
Design, architecture, art, industrial products Measured for CIE standard illuminant D65	Colour Information Technology Measured for CIE illuminants D65 and D50
colour order system; name and coordinates: RAL Design System (CIELAB) $L^{*} \boldsymbol{C}^{*}{ }_{\mathrm{ab}} \boldsymbol{h}_{\mathrm{ab}}$, lightness, chroma, hue angle Munsell Colour System VCH, lightness (Value), Chroma, Hue text Natural Colour System (NCS) пси*: relative blackness, relative chroma relative elementary hue text	Device system name and coordinates: Printer system (illuminants D50 or D65): cmy, content of "cyan", "magenta", "yellow" Display system (standard illuminant D65): $r g b / s R G B$, content of "red", "green", "blue" No user friendly colour coordinates Nearly no connection to colour order systems
Aim: define user friendly connection New: Interpretation of the $\boldsymbol{r g b}$ colour data in the range $\mathbf{0}$ to 1 as elementary colour data Linear relations between relative and absolute coordinates lab* $\boldsymbol{L} \boldsymbol{L A B}$ * $\boldsymbol{r g} \boldsymbol{b}^{*}{ }_{3}-\boldsymbol{L} * \boldsymbol{a}^{*} \boldsymbol{b} \boldsymbol{b}^{*} \boldsymbol{C}^{*}{ }_{\mathrm{ab}} \boldsymbol{h}_{\text {ab }}$ (CIELAB) $\boldsymbol{r g b}-\mathbf{c m y}, \boldsymbol{r g b}_{3}^{*}-\boldsymbol{c m y} \boldsymbol{*}_{3}$ ("1-minus"-relation) $\boldsymbol{r g} \boldsymbol{b}_{3}{ }_{3}-n c e^{*}, \boldsymbol{r g} b_{3}^{*}-n c u^{*}$ relative coordinates $\boldsymbol{l a} \boldsymbol{b}^{*}$: elementary redness \boldsymbol{r}_{3}^{*}, greenness $\boldsymbol{g}_{3}{ }_{3}$, blueness \boldsymbol{b}^{*}, blackness \boldsymbol{n}^{*} chroma c^{*}, elementary hue e^{*}, elementary hue text \boldsymbol{u}^{*}	

Figure 3 - Colour order systems and colour image technology

Figure 3 shows the application of colour in daily life and in colour image technology. There is approximately no connection between the coordinates rgb and cmy of colour image technology and the colour coordinates of the colour systems RAL, Munsell and NCS. In the area for image technology there are many rgb definitions which are oriented on device systems and not on colorimetric colour order systems. Also the rgb data of the colour spaces $s R G B$ and AdobeRGB are especially based on properties of television monitors and only to a small part on the visual and colorimetric colour systems. In figure 3 the interpretation of the rgb colour data of information technology as elementary colour data $\boldsymbol{r g} \boldsymbol{b}_{3}$ defines a linear and therefore especially simple and efficient connection.
The colorimetric relative coordinates $\boldsymbol{n c} \boldsymbol{u}^{*}$ (relative blackness \boldsymbol{n}^{*}, relative chroma \boldsymbol{c}^{*} and the elementary hue text \boldsymbol{u}^{*}) are for every hue text defined as linear function ($\boldsymbol{F}_{\text {lin }}$ or $\boldsymbol{f}_{\text {lin }}$) of the adapted CIELAB coordinates $L C H^{*}{ }_{a}\left(=L^{*}, C_{a b, a}^{*}\right.$, $h_{\mathrm{ab}, \mathrm{a}}$; lightness, adapted chroma and hue angle) and the relative CIELAB coordinates $\boldsymbol{I} \boldsymbol{c h}^{*}\left(=\boldsymbol{I}^{*}, \boldsymbol{c}^{*}, \boldsymbol{h}^{*}\right.$; relative lightness, relative chroma and relative hue angle $\boldsymbol{h}^{*}=h_{\mathrm{ab}, \mathrm{a}} / 360$)

$$
\begin{align*}
& \boldsymbol{n c \boldsymbol { u } ^ { * }}=\mathbf{F}_{\text {lin }}\left(L^{*}, C^{*}{ }_{\mathrm{ab}}, h_{\mathrm{ab}, \mathrm{a}}\right) \tag{1}\\
& \boldsymbol{n c \boldsymbol { u } ^ { * }}=\mathbf{f}_{\text {lin }}\left(\boldsymbol{I}^{*}, \boldsymbol{c}^{*}, \boldsymbol{h}^{*}\right) \tag{2}
\end{align*}
$$

If the application program allows the input of the appropriate and user friendly colour coordinates ncu* then the colour image technology is connected in a new way to the colour coordinates used in design, art and architecture. For every elementary hue text \boldsymbol{u}^{*} the coordinates $\boldsymbol{r g b}$ of colour image technology are interpreted as elementary colour coordinates $\mathbf{r g} \boldsymbol{b}_{3}{ }_{3}$ which are connected by the simple and linear relations

$$
\begin{align*}
& \boldsymbol{n}^{*}=1-\max \left(r_{3}^{*}, g_{3}^{*}, b_{3}^{*}\right) \tag{3}\\
& \boldsymbol{c}^{*}=\max \left(r_{3}^{*}, g_{3}^{*}, b_{3}^{*}\right)-\min \left(r^{*}{ }_{3}, g_{3}^{*}, b_{3}^{*}\right) \tag{4}
\end{align*}
$$

with the new user friendly coordinates ncu*. Similar coordinates are used in the Natural Colour System NCS of the Swedish Standards SS 019100 to 03 . In agreement with NCS the relative blackness \boldsymbol{n}^{*} and the relative chroma \boldsymbol{c}^{*} have a colorimetric definition. These colour attributes are defined in the colour system NCS device independent by visual experiments.
In the following section 4 the rgb of colour image technology are either interpreted as device system data olv ${ }_{3}$ or as elementary data $r g b_{3}^{*}$. In the following figure 5 part 1 to 4 of section 4 the two above equations are explained and show visually the calculation of relative blackness \boldsymbol{n}^{*} and relative chroma \boldsymbol{c}^{*}.

4. Colorimetric Standard, adapted and relative CIELAB data

In section 3.1 of DIN 33872-1 many coordinates are given which are all related by linear relations for a given output device. These relations are explained in the following by some figures. As example especially for the elementary colour red R the $l a b^{*} r g b^{*}{ }_{3}$ coordinates are shown and the relation to the relative colour attributes whiteness \boldsymbol{w}^{*}, blackness \boldsymbol{n}^{\star}, chroma \boldsymbol{c}^{*}, colour deepness \boldsymbol{d}^{*} and brilliantness \boldsymbol{i}^{*} is given.

Figure 4 - Relative device coordinates olv ${ }_{3}$ and the colour mixture of white W, grey Z and yellow red J... R. Figure 4 shows the relative device coordinates $o l v_{3}^{*}$ and the colour mixture of white W, central grey Z and yellow red $J . . . R$ from these device coordinates $o l v^{*}{ }_{3}$. In this paper it is distinguished between absolute CIELAB coordinates $L A B^{*}$ (three capital letters) and relative CIELAB coordinates lab* (three small letters). The coordinates olv* ${ }_{3}$ are relative coordinates which are described by the addition lab*olv* ${ }_{3}$. The value range is between 0 and 1 . The index 3 limits the set of the coordinates to 3 values which may be compared for example with the 4 values of $c m y n_{4}^{*}$.

The star (*) defines a linear relation between olv ${ }_{3}=l a b^{*} o l v_{3}{ }_{3}$ and $L C H^{*}{ }_{a}=L A B^{*} L C H^{*}$ af CIELAB. The star therefore defines colorimetric coordinates in a similar way compared to the rgb coordinates of the colour space $s R G B$ which have a defined relation to CIELAB (see IEC 61966-7-1:2006 for RGB colour printers).
The coordinates rgb of colour image technology are usually interpreted as device coordinates olv* ${ }_{3}$ which are connected by the simple and linear relations

$$
\begin{align*}
& \boldsymbol{n}^{\star}=1-\max \left({O^{*}}_{3}, I_{3}^{*}, v_{3}^{*}\right) \tag{1}\\
& \boldsymbol{c}^{*}=\max \left(0^{*}, I_{3}^{*}, v_{3}^{*}\right)-\min \left(0^{*}, I_{3}^{*}, v^{*}\right) \tag{2}
\end{align*}
$$

with the user friendly coordinates relative blackness \boldsymbol{n}^{*} and relative chroma \boldsymbol{c}^{*}. This relation is shown in figure 4 by arrows. In the case of equality of the three coordinates $0^{*}{ }_{3}=I^{*}{ }_{3}=v^{*}{ }_{3}$ or $r=g=b$ then in colour image technology the maximum and minimum is identical. Then the relative chroma \boldsymbol{c}^{*} is cero. The relative blackness \boldsymbol{n}^{*} decreases from the value 1 at black N to the value 0 at white W. The user expects after this that the output for all device systems in the special case of $r=g=b(0<=r, g, b<=1)$ leads to the chroma $c^{*}=0$ and appears therefore visually achromatic.

Elementary hue Red R: linear relation lab*rgb*3-lab*ncw*

Part 1
YE721-1
Elementary hue Green G: linear relation lab*rgb*3-lab*nicwdt*

Elementary hue $G: n^{*}=0,2 ; c^{*}=0,4 ; w^{*}=0,4 ; t^{*}=0,6$ Part 3

YE721-3

Elementary hue Red R: linear relation $\operatorname{lab}{ }^{*} r g b *_{3}-l a b * n i c w d t *$

Elementary hue R: $n *=0,2 ; c^{*}=0,4 ; w^{*}=0,4 ; t *=0,6$ Part 2

YE721-2

Dlementary hue Blue \boldsymbol{B} : linear

relation $l a b{ }^{*} \mathrm{rgb}^{*}{ }_{3}-l a b *{ }^{*}$ nicwdt*

Elementary hue $B: n^{*}=0,2 ; c^{*}=0,4 ; w^{*}=0,4 ; t^{*}=0,6$
Part 4
YE721-4

Figure 5 - Relations of the coordinates $r g b_{3}^{*}$ and coordinates $w^{*}, d^{*}, n^{*}, i^{*}$ and of the relative chroma c^{*}
Many software products of image technology require up to now that the user adapts to special device properties. Many software products use the special property of standard offset printing that for example the standard colorants C, M, and Y produce a mean grey with a $C M Y$ mixture in the relation $30: 30: 45$. This property is used by many Windows and Mac versions of Adobe Photoshop. The user must input the data cmy $=(0,30,3,0,45)$ to produce a mean grey in the output on monitors and printers instead of $c m y=(0,5,0,5,0,5)$. The user therefore must learn a special property of a special device process. Increasingly the users don't like to learn the many device properties and appreciate versions of Adobe Photoshop which for example produce an achromatic mean grey for the values $c m y=r g b=(0,5,0,5,0,5)$ both for the display and printer output with some Unix and Display PostScript versions.

More and more the user wishes software with this natural and user friendly property.
Figure 5 parts 1 to 4 shows the relations of the elementary colour coordinates $r g b^{*}{ }_{3}$ and the coordinates relative whiteness \boldsymbol{w}^{*}, relative colour deepness \boldsymbol{d}^{*}, relative blackness \boldsymbol{n}^{*}, relative brilliantness \boldsymbol{i}^{*} and relative chroma \boldsymbol{c}^{*}.
In Figure 5 parts 1 to 4 he largest of the three coordinates $r_{3}^{*}, g_{3}^{*}, b_{3}^{*}$ determines the hue. In the case of part 1 to 4 the other two coordinates are equal and therefore only the hues of the elementary colours appear, for example red R (figure 5, parts 1 and 2) and green G and blue B (figure 5, parts 3 and 4).
Figure 5 parts 5 and 6 show colour triangles of the elementary colour red R which are defined by the colorimetric adapted CIELAB coordinates $\left(C_{a \mathrm{ab}, \mathrm{a}}^{*}, L^{*}\right)$. Both figure parts show always 16 steps between black N and white W and between black N and chromatic X, and between chromatic X and white W .
In figure 5 part 5 the colour S is mixed by the colour red R and white W. The mixture ratios are defined by the relative deepness \boldsymbol{d}^{*} and the relative whiteness \boldsymbol{w}^{*} with a value range between 0 and 1 .
In figure 5 part 6 the colour F is additionally mixed by the colour S and black N. The mixture ratios are defined by the relative brilliantness i^{*} and the relative blackness \boldsymbol{n}^{*} with a value range between 0 and 1 .
Instead of the three coordinates $r^{*}{ }_{3}, g_{3}^{*}, b_{3}^{*}$ a user may for example use the relative blackness \boldsymbol{n}^{*}, the relative chroma \boldsymbol{c}^{*}, and the elementary hue R. For example a user may specify the user friendly colour attributes relative blackness \boldsymbol{n}^{*}, relative chroma \boldsymbol{c}^{*}, and the elementary hue text \boldsymbol{u}^{*} to create a CAD drawing or a colour design.
The coordinates $r g b_{3}^{*}$ have for example four important advantages compared to the rgb coordinates of the colour space $s R G B$, see IEC 61966-2-1:

1. The coordinates $r g b_{3}^{*}$ are device independent and correspond to the visual system;
2. 16 step equally spaced digital input data produce visually equidistant colour series in CIELAB;
3. The coordinates $r g b^{*}{ }_{3}$ have simple linear relations to visual colour attributes $\boldsymbol{w}^{*}, \boldsymbol{d}^{*}, \boldsymbol{n}^{*}, \boldsymbol{i}^{*}$, and \boldsymbol{c}^{*};
4. The coordinates $r g b^{*}$ have a simple linear relation to the elementary hue text \boldsymbol{u}^{*}.

In figure 5 parts 5 and 6 the linear relation of these visual colour attributes to the adapted CIELAB data $L^{*}{ }_{a}=L^{*}$ and $C_{a b, a}^{*}$ is shown. In the CIELAB colour space the colour S is a linear mixture between elementary red R and white W and the colour F is a linear mixture between the colour S and black N.
In figure 4 part 1 the colour white W has the three coordinates $o l v^{*}{ }_{3}=r g b_{3}{ }_{3}=(1,1,1)$ and in figure 4 part 2 mean grey Z has the three coordinates $o / v^{*}{ }_{3}=r g b^{*}{ }_{3}=(0,5,0,5,0,5)$. For example a colour F may therefore may be calculated from the relative whiteness \boldsymbol{w}^{*}, and the relative blackness \boldsymbol{n}^{*} and the relative colour deepness $\boldsymbol{d}^{*}=\mathbf{1} \boldsymbol{-} \boldsymbol{w}^{*}$ and the relative brilliantness $\boldsymbol{i}^{\star}=\mathbf{1 - \boldsymbol { n } ^ { * }}$. The relations of the coordinates rgb* ${ }_{3}$ and the different relative coordinates \boldsymbol{w}^{*}, \boldsymbol{d}^{\star}, $\boldsymbol{n}^{*}, \boldsymbol{i}^{*}$, and the relative chroma \boldsymbol{c}^{*} are linear and are shown in figure 5 parts 1 to 4 .
In the standard series DIN 33872 the rgb input data may be interpreted as $r g b_{3}^{*}$ elementary colour data. In this case in the output the hues of the four elementary colours are produced. This interpretation is shown with an arrow in the following way ($\mathrm{rgb} \rightarrow \mathrm{rgb}_{3}^{*}$).
Another interpretation is shown by ($\mathrm{rgb} \rightarrow \mathrm{ol} \mathrm{v}_{3}^{*}$). In this case the rgb input data are interpreted as $o l v_{3}^{*}$ device data and in this case the six chromatic device colours are produced.
In the case of the input data for blue $\mathrm{rgb}=(0,0,1)$ then in figure 9 in section 7 the maximum colour shows the hue angle 306 degree for the system TLS00 or the hue angle 305 degree for the system ORS18. These outputs lead in both cases to a reddish blue. However, the user appreciates a user friendly and device independent hue output of elementary blue with the hue angel 272 degree.
DIN 33872-2 to -6 tests by YES/NO criteria if the output properties according to user wishes are fulfilled or not. A quality assessment of the device system is not intended. For one user the output property to produce the elementary hue may be important and for another users unimportant.
If a user requires output properties which are defined in DIN 33872 parts 2 to 6 then there are many device systems which fulfill these properties or which may fulfill these output properties by appropriate default values of the device system.
In many cases a user wishes alternate possibilities for the output, for example either the output property "device system colour output" or "elementary colour output" by appropriate default parameters (see ORS18, TLS00, NRS18 and SRS18 in figure 9 of section 7).
In the field „Remarks to the test results" descriptions of these alternate output possibilities are appreciated (see DIN $33872-2$ to 6).

5. Linear colorimetry in hue triangle and relative lightness I*

Colour F and 9 others	Colorimetric coordinates in colour triangle of CIELAB hue $\boldsymbol{h}_{\mathrm{ab}}$ Formula use given data of relative chroma c^{*} and blackness \boldsymbol{n}^{*}					
			whiteness w^{*} $=1-n^{*}-c^{*}$	deepness	brilliantness	triangle lightness $t^{*}=$ $1-n^{*}-0.5 c^{*}$
Colour 1 Colour 2=S Colour 3	0 0 0	$\begin{aligned} & c^{*} \\ & c^{*} /\left(1-n^{*}\right) \\ & n^{*}+c^{*} \end{aligned}$	$\begin{aligned} & 1-c^{*} \\ & 1-c^{*} /\left(1-n^{*}\right) \\ & 1-n^{*}-c^{*} \end{aligned}$	$\begin{aligned} & \mathrm{c}^{*} \\ & \mathrm{c}^{*} /\left(1-\mathrm{n}^{*}\right) \\ & \mathrm{n}^{*}+\mathrm{c}^{*} \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 1-0.5 \mathrm{c}^{*} \\ & 1-0.5 \mathrm{c}^{*} /\left(1-\mathrm{n}^{*}\right) \\ & 1-0.5\left(\mathrm{n}^{*}+\mathrm{c}^{*}\right) \end{aligned}\right.$
Colour 4 Colour 5=Q Colour 6	$\begin{aligned} & \mathrm{n}^{*} \\ & \mathrm{n} * /\left(\mathrm{n}^{*}+\mathrm{c}^{*}\right) \\ & 1-\mathrm{c}^{*} \end{aligned}$	$\begin{aligned} & 1-\mathrm{n}^{*} \\ & \mathrm{c}^{*} /\left(\mathrm{n}^{*}+\mathrm{c}^{*}\right) \\ & \mathrm{c}^{*} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1-\mathrm{n}^{*} \\ & \mathrm{c}^{*} /\left(\mathrm{n}^{*}+\mathrm{c}^{*}\right) \\ & \mathrm{c}^{*} \end{aligned}$	$\begin{aligned} & 0.5\left(1-\mathrm{n}^{*}\right) \\ & 0.5 \mathrm{c}^{*} /\left(\mathrm{n}^{*}+\mathrm{c}^{*}\right) \\ & 0.5 \mathrm{c}^{*} \end{aligned}$
Colour 7 Colour 8 Colour 9	$\begin{aligned} & 1-n^{*} \\ & 1-n^{*}-0.5 c^{*} \\ & 1-n^{*}-c^{*} \end{aligned}$	0 0 0	$\begin{aligned} & \mathrm{n}^{*} \\ & \mathrm{n}^{*}+0.5 \mathrm{c}^{*} \\ & \mathrm{n}^{*}+\mathrm{c}^{*} \end{aligned}$	$\begin{aligned} & 1-\mathrm{n}^{*} \\ & 1-\mathrm{n}^{*}-0.5 \mathrm{c}^{*} \\ & 1-\mathrm{n}^{*}-\mathrm{c}^{*} \end{aligned}$	$\begin{aligned} & \mathrm{n}^{*} \\ & \mathrm{n}^{*}+0.5 \mathrm{c}^{*} \\ & \mathrm{n}^{*}+\mathrm{c}^{*} \end{aligned}$	$\begin{aligned} & \mathrm{n}^{*} \\ & \mathrm{n}^{*}+0.5 \mathrm{c}^{*} \\ & \mathrm{n}^{*}+\mathrm{c}^{*} \end{aligned}$

Figure 6 - Colorimetric coordinates for given relative chroma \boldsymbol{c}^{*} and relative blackness \boldsymbol{n}^{\star}
Figure 6 shows the relation of colorimetric coordinates of a colour \boldsymbol{F} if relative chroma \boldsymbol{c}^{*} and relative blackness \boldsymbol{n}^{\star} are given. The \boldsymbol{c}^{*} and \boldsymbol{n}^{*} data are transferred to the relative whiteness \boldsymbol{w}^{*}, the relative colour deepness \boldsymbol{d}^{*}, the relative brilliantness i^{*} and the relative triangle lightness t^{*} in the first line of the figure. This line defines additionally 6 colours produced by red parallels compared to the three triangle lines trough F and three further colours by the connections $2-\mathrm{F}-\mathrm{N}, 5-\mathrm{F}-\mathrm{W}$ and $8-\mathrm{F}-\mathrm{M}$. For these 9 colours the coordinates are calculated from the given coordinates \boldsymbol{c}^{*} and \boldsymbol{n}^{*}.
In any application two equivalent of the 6 colour attributes can be used instead, for example the relative triangle lightness \boldsymbol{t}^{\star}, and the relative chroma \boldsymbol{c}^{*}. Together with the hue angle \boldsymbol{h}^{*} in this case the cylindric coordinates $\boldsymbol{t c h}^{*}$ instead of triangle coordinates $\boldsymbol{n c h}{ }^{*}$ are calculated. The following page shows colorimetric coordinates of a colour \boldsymbol{F} for given relative chroma \boldsymbol{c}^{*} and relative triangle lightness \boldsymbol{t}^{*}.
http://www.ps.bam.de/YE76/10L/L76E00NP.PDF
In applications it is realized that the colour coordinates relative chroma \boldsymbol{c}^{*} and relative blackness \boldsymbol{n}^{*} can be evaluated or guessed visually more easily compared to the others. Therefore these two have been chosen in the Swedish Natural Colour System NCS, see for example Hard and Sivik (1980). The calculations from the adapted CIELAB data $L C H_{a}^{*}$ require the lightness and chroma of the maximum colour M of the same hue compared to the given colour F. The maximum colour M has the chroma $\boldsymbol{C}_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}^{*}$ and the lightness $\boldsymbol{L}^{*} \mathrm{M}$. The colour F has the chroma $\boldsymbol{C}_{\mathrm{ab}, \mathrm{a}}^{*}$ and the lightness \boldsymbol{L}^{*}. Therefore the following equations are valid:

$$
\begin{align*}
& \boldsymbol{c}^{*}=\boldsymbol{C}_{\mathrm{ab}, \mathrm{a}}^{*} / \boldsymbol{C}_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}^{*} \tag{1}\\
& \boldsymbol{I}^{*}=\left[\boldsymbol{L}^{*}-\boldsymbol{L}_{\mathrm{N}}^{*}\right] /\left[\boldsymbol{L}_{\mathrm{W}}^{*}-\boldsymbol{L}_{\mathrm{N}}^{*}\right] \tag{2}\\
& \boldsymbol{t}^{*}=\boldsymbol{I}^{*}-\boldsymbol{c}^{*}\left\{\left[\boldsymbol{L}_{\mathrm{M}}^{*}-\boldsymbol{L}_{\mathrm{N}}^{*}\right] /\left[\boldsymbol{L}^{*}{ }_{\mathrm{W}}-\boldsymbol{L}_{\mathrm{N}}^{*}\right]-0.5\right\} \tag{3}\\
& \boldsymbol{n}^{*}=1-\boldsymbol{t}^{\boldsymbol{*}}-0.5 \boldsymbol{c}^{*} \tag{4}
\end{align*}
$$

With these equation the relative chroma \boldsymbol{c}^{*}, the relative lightness \boldsymbol{I}^{*}, the relative triangle lightness \boldsymbol{t}^{*} and the relative blackness \boldsymbol{n}^{*} are calculated from the adapted CIELAB data of a colour F and their maximum colour M of the same hue. Linear equations serve for the determination of the CIELAB data of the maximum colour M from the adapted CIELAB data of a colour F. The CIELAB data of M depend on the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}}$ of F and the adapted CIELAB data of the six chromatic device colours $X=O Y L C V M$.

Colorimetric supplement for DIN 33872-1 to -6

6. Colorimetric adapted CIELAB data in a hue hexagon

The colorimetric data of television, printing and of elementary colours in an adapted and relative CIELAB chroma diagram are of special importance for the output linearisation on an output device.
The six chromatic colours $X=O Y L C V M$ and their linear mixtures create the maximum colours M. For each adapted CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}}$ there is a maximum colour M with defined CIELAB data $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}$, and $h_{\mathrm{ab}, \mathrm{a}}^{*}$.The linearisation, for example according to ISO/IEC TR 19797, produces 16 step equidistant colour series in the output.

Part 1
YE730-1

Part 3
YE730-2

Elementary colours RJGB
2 mixed colors $C^{\prime}=G 50 B, M^{\prime}=B 50 R$
Part 5

Part 2
YE730-3

Figure 7 - Television and printing colours in the adapted and relative CIELAB chroma diagram
Figure 7 parts 1, 3, and 5 (all left) show the standard offset printing colours ORS18 (Offset Reflective System with

Colorimetric supplement for DIN 33872-1 to -6

lightness $L^{*}=18$ for black N), the standard television colours TLS00 (Television Luminous System with lightness $L^{*}=$ 0 for black N), and a colour elementary system NRS18 (Natural Reflective System with lightness $L^{*}=18$ for black N) in the colorimetric adapted CIELAB chroma diagram ($a_{\mathrm{a}}^{*}, b^{*}{ }_{\mathrm{a}}$). For the chroma components $\left(a_{\mathrm{a}}^{*}, b_{\mathrm{a}}^{*}\right)$ it is valid $a^{*}{ }_{\mathrm{a}}=$ $L A B^{*}{ }_{\mathrm{a}} a^{*}{ }_{\mathrm{a}}$ and $b^{*}{ }_{\mathrm{a}}=L A B_{\mathrm{a}}{ }^{*} b^{*}{ }_{\mathrm{a}}$.
Figure 7 parts 2, 4, and 6 (all right) shows the same colours in the colorimetric relative CIELAB chroma diagram $\left(a_{r}^{*}, b_{r}^{*}\right)$. For the relative chroma components $\left(a_{r}^{*}, b_{r}^{*}\right)$ it is valid $a_{r}^{*}=l a b^{*} a_{r}^{*}$ and $b_{r}^{*}=l a b^{*} b_{r}^{*}$.
The hue angle difference between cyan blue C and violet blue V is for the system TLS00 approximately 110 $(=306-196)$ degree and for the system OLS18 approximately $68(=304-236)$ degree. The systems TLS00 and OLS18 produce hue angle differences of 183% and 113% compared to the mean hue angle difference of 60 degree (100\%) for the six chromatic device colours OYLCVM. According to this view the basic colours of the system ORS18 are much more regular compared to the basic colours of TSLOO which are used today mostly for the coding and the transmittance of the colour information, for example in the colour space $s R G B$ (see IEC 61966-2-1).
The colorimetric adapted CIELAB hue angles in the system NRS18 are still more regular compared to TLS00 and ORS18. The system NRS18 is additionally device independent and is based on the elementary colours RJGB which include many properties of the visual human colour vision system. The colorimetric adapted CIELAB hue angle are located for the four elementary colours $R J G B$ in a rough approximation near 30, 90, 150, and 270 degree. Between red R, yellow J, and green G the shift is in both cases 60 degree and between green G, blue B, and red R the shift is in both cases 120 degree. The exact location in the relative CIELAB chroma diagram (a^{*}, b^{*}) is also included in figure 7 , and in figure 8 of section 7 . With the definition of the two "mean hues" cyan blue $\mathrm{C}_{\mathrm{gb}}=\mathrm{G} 50 \mathrm{~B}$, and magenta red $\mathrm{M}_{\mathrm{br}}=B 50 \mathrm{R}$ which are located in both cases at the mean between $G-B$, and $B-R$ there is created again a hexagon. If one looks at the six colours $X=R J G C_{g b} B M_{\mathrm{br}}$ which include the four elementary colours $R J G B$ and the intermediate hues $C_{g b} M_{\mathrm{br}}$ then the hue angle difference is approximately regular and is about 60 degree between any two neighboring hues.
The colorimetric connection between the rgb coordinates of the information technology with 16 step colour series and the $L^{*} a^{*} b^{*}$ coordinates of CIELAB is studied in many papers. Some of these papers study the connection on a colorimetric and visual basis and therefore some are listed in the following.
A multispectral CIELAB camera which can measure the output colours of the information technology and also retro-reflective and fluorescent colours has been described by Stephan Jaeger (2005, 2006).
The CIELAB data for the CIE standard illuminant D65, and the CIE illuminant D50 of output colours of the information technology has been used by Hans Wagenknecht $(2005,2006)$ for the calculation of rgb data and their special transformations to calibrate scanners and printers.
New methods for the production of colour test charts according to DIN 33866, ISO/IEC 15775, and ISO/IEC TR 24705 with colorimetric equidistant 16 step output colour series has been developed by Jens Witt (2005, 2006).
All papers serve for the purpose to connect the coordinates of colour image technology in an improved way with the colour coordinates used in every day life, compare also figure 3 in section 3.

7. Colorimetric calculation examples for four device systems

The six colours $X=O Y L C V M$ or $X=R J G C_{\mathrm{gb}} B M_{\mathrm{br}}$ of the different device systems of section 6 have different hue angles. Four device systems will be viewed in the following: ORS18, TLS18, NRS18, and SRS18. The first two are real standard device systems, and the two others are ideal (artificial) device systems. NRS18 is based on the hue angles of the elementary colours in CIELAB, and SRS18 uses the hue angles of the six device colours with 60 degree difference of any two neighboring hues.
The lightness difference $\Delta L^{*}=L^{*}{ }_{w}-L^{*}{ }_{N}(=95-18=77)$ between white and black of ORS18 is also chosen for NRS18 and SRS18. The chroma C^{*} ab of the six (ideal) basic colours $X=O Y L C V M$ has also the value 77. Because of this symmetric structure of the colour space and its $L A B^{*}$ and $R G B^{*}$ colour coordinates one may expect equal colour discrimination for the complementary colours of the monitor, for example O and C. This property has been verified for example by Holtsmark and Valberg (1971) by experimental measurements with complementary optimal colours. The CIELAB colour metric is in parts in opposition to this experimental results. However, a new hexagon metric which has to be developed further includes a structure which may directly describe the experimental results, see also Richter (2007).

Figure 8 - Adapted CIELAB data $L A B^{*}$ of four device systems ORS18, TLS18, NRS18, and SRS18
Figure 8 shows the adapted CIELAB data $L^{*}{ }_{\mathrm{M}}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M},}$, and $H_{\mathrm{a}, \mathrm{M}}^{*}$ of six basic colours $X=O Y L C V M$. The four device systems have different lightness, chroma, and hue angle. For ORS18 and TLS18 the adapted CIELAB data $L^{*}{ }_{M}$ and $C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$ are very different and for the (theoretical) systems SRS18 and NRS18 they are equal. The hue angles are for TLS18 very unequal and for SRS18 exact regular and shifted by 60 degree between neighboring hues. The systems SRS18 and NRS18 have the same lightness and chroma difference with the value 77. The system NRS18 has the three visual elementary hue angles 25,162 , and 272 degree, and SRS18 has the hue angles 30,150 , and 270 degree with a regular difference of 120 degree. Elementary yellow J is located at the hue angle $93[=(162+25) / 2]$ degree or at $90[=(30+150) / 2]$ degree at the intermediate point between the hue angle of red R and green G. Similar the hue angle of cyan blue $C_{g \mathrm{~g}}$ is located at the intermediate point between green G and blue B, and magenta red M_{br} is located at the intermediate point between blue B and red R.
Figure 8 shows the maximum colour M with the CIELAB hue angle $h_{a b}=52$ degree for the four device systems ORS18, TLS18, NRS18, and SRS18. For the calculations the following equations are valid:

$$
\begin{align*}
& b_{\mathrm{a}}^{*}=a_{\mathrm{a}}^{*} \tan \left(h_{\mathrm{ab}, \mathrm{a}}\right) \tag{1}\\
& b_{\mathrm{a}}^{*}=b_{\mathrm{a}, \mathrm{i},}^{*}+\mathrm{m}\left[a_{\mathrm{a}}^{*}-a_{\mathrm{a}, \mathrm{i},}^{*}\right] \tag{2}
\end{align*}
$$

with

$$
\begin{equation*}
m=\left[b_{a, i 0+1}^{*}-b_{a, i 0}^{*}\right] /\left[a_{\mathrm{a}, i 0+1}^{*}-a_{\mathrm{a}, \mathrm{i}, 0}^{*}\right] \tag{3}
\end{equation*}
$$

$$
(i 0=0,1, \ldots, 5 \text { for OYLCVM })
$$

For example in figure 8 the equation (1) with the adapted CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}}$ describes the (orange) line trough the origin with the angle $h_{\mathrm{ab}, \mathrm{a}}=52$ degree. The second equation describes a line trough the points of the device colours O and Y. The cut point between both lines (ball of the colour orange in figure 8) leads to the chroma components ($a^{*}{ }_{\mathrm{a}, \mathrm{M}}, b^{*}{ }_{\mathrm{a}, \mathrm{M}}$) of the maximum colour M which are calculated from the adapted CIELAB chroma of the colours O and Y. It is unknown how the visual system determines these calculations.
Probably the visual system determines the data with the relative chroma and lightness of O and Y. The calculations determine first the relative CIELAB hue angle ratio α_{M} between the two neighboring maximum colours O and Y. The chroma $a_{\mathrm{a}, \mathrm{M}}^{*}$ and $b^{*}{ }_{\mathrm{a}, \mathrm{M}}$, and the lightness $L^{*}{ }_{\mathrm{M}}$ of the mixed maximum colour M are all determined by the relative hue angle ratio α_{M} of O and Y.

Colorimetric supplement for DIN 33872-1 to -6

It is valid:

$$
\begin{align*}
& \alpha_{\mathrm{M}}=\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}-h_{\mathrm{ab}, \mathrm{a}, \mathrm{O}}\right] /\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{Y}}-h_{\mathrm{ab}, \mathrm{a}, \mathrm{O}}\right] \tag{4}\\
& a^{*}{ }_{\mathrm{a}, \mathrm{M}}=\alpha_{\mathrm{M}} a_{\mathrm{a}, \mathrm{Y}}+\left(1-\alpha_{\mathrm{M}}\right){a^{*}}_{\mathrm{a}, \mathrm{O}}^{*} \tag{5}\\
& b^{*}{ }_{\mathrm{a}, \mathrm{M}}^{*}=\alpha_{\mathrm{M}} b^{*}{ }_{\mathrm{a}, \mathrm{Y}}+\left(1-\alpha_{\mathrm{M}}\right) b^{*}{ }_{\mathrm{a}, \mathrm{O}} \tag{6}\\
& L^{*}=\alpha_{\mathrm{M}} L^{*}{ }_{\mathrm{Y}}+\left(1-\alpha_{\mathrm{M}}\right) L^{*}{ }_{\mathrm{O}} \tag{7}\\
& C_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}^{*}=\left[a_{\mathrm{a}, \mathrm{M}}^{*}+b_{\mathrm{a}, \mathrm{M}}^{*}\right]^{1 / 2} \tag{8}
\end{align*}
$$

One may consider that the adapted CIELAB chroma $C^{*}{ }_{a b, a, M}$ has to be calculated from the components $a^{*}{ }_{a, M}$ and $b^{*}{ }_{a, M}$ of the maximum colour M. In figure 8 and for ORS18 for example the value (=77) of the adapted CIELAB chroma $C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$ is less then both the chroma of O and Y (value $=83$ and value $=92$) and can not be calculated direct from α_{M}.

Figure 9 - Relative CIELAB data lab*olv ${ }^{*}{ }_{3}$ of four device systems ORS18, TLS18, NRS18, and SRS18
Figure 9 shows the relative CIELAB data $o l v^{*}{ }_{3}$ and $r g b^{*}{ }_{3 M}$ of six device colours $X=O Y L C V W M$, and of a maximum colour M. In the sector $O-Y$ the second coordinate of $o l v^{*}{ }_{3 M}$ changes linear with the relative hue angle α_{M} between the values 0 and 1 .
The calculation of the relative hue angle α_{M} is given in each of the four parts for the same CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$ $=52$ degree. In figure 9 by use of equation (4) and the relative hue angle α_{M} the following three equations for the relative CIELAB data $\operatorname{lab}{ }^{*} \mathrm{OV}^{*}{ }_{3, \mathrm{M}}$ are valid for the maximum colours between O and Y.

$$
\begin{align*}
& o_{3, M}^{*}=\alpha_{M} o_{3, Y}^{*}+\left(1-\alpha_{M}\right) o^{*}{ }_{3, O} \tag{9}\\
& I_{3, M}^{*}=\alpha_{M} I_{3, Y}^{*}+\left(1-\alpha_{M}\right) I_{3, O}^{*} \tag{10}\\
& v_{3, M}^{*}=\alpha_{M} v_{3, Y}^{*}+\left(1-\alpha_{M}\right) v_{3, O}^{*} \tag{11}
\end{align*}
$$

In the special case of the Natural Reflective system NRS18 these CIELAB data are called lab*rgb* ${ }_{3}$ instead of lab*olv ${ }_{3}$, see figure 9 (bottom left). The letters rgb* include the definition according to three visual elementary colours $R G B$ which are independent of the many definitions of device colours OLV.

Figure 10 - Relative CIELAB data lab*tch* of four device systems ORS18, TLS18, NRS18, and SRS18 Figure 10 shows the relative CIELAB data $\boldsymbol{t}^{*}{ }_{M}$ and $\boldsymbol{c}^{*}{ }_{M}$ of six basic colours $X=O Y L C V W M$, and a maximum colour M. For all six basic colours and the maximum colour M the values for the relative triangle lightness $\boldsymbol{t}^{\star}=0,5$, and the relative chroma $\boldsymbol{c}^{*}=1$ are constant. Colours with the relative chroma $\boldsymbol{c}^{*}=1$ always have the property that at least one of the three components of $l a b^{*} \circ / v^{*}{ }_{3 M}$ has the value 1 , and at least one other has the value 0 . This is fulfilled in figure 10 for all six device colours, and the mixture colour of the hue angle 52 degree. Then for the relative blackness \boldsymbol{n}^{*} and the relative chroma \boldsymbol{c}^{*} it is valid.

$$
\begin{align*}
& n^{*}=1-\max \left(0^{*}{ }_{3}, I^{*}{ }_{3}, v^{*}{ }_{3}\right) \tag{12}\\
& \boldsymbol{c}^{*}=\max \left(O_{3}^{*}, I^{*}{ }_{3}, v^{*}{ }_{3}\right)-\min \left(O_{3}^{*}, I^{*}{ }_{3}, v^{*}{ }_{3}\right) \tag{13}\\
& \boldsymbol{t}^{*}=1-\boldsymbol{n}^{*}-0,5 \boldsymbol{c}^{*} \tag{14}\\
& \boldsymbol{w}^{*}=1-\boldsymbol{n}^{\boldsymbol{*}}-\boldsymbol{c}^{*} \tag{15}
\end{align*}
$$

The relative triangle lightness \boldsymbol{t}^{*} and the relative whiteness \boldsymbol{w}^{*} are calculated according to equations (14) and (15) from the relative blackness \boldsymbol{n} * and the relative chroma \boldsymbol{c}^{*}.
Up to now the case was studied that the hue angle $h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$ of a maximum colour M was given. In general all other colour coordinates are needed of the four device systems, if any set of three coordinates of any colour F is given. We will study in the following the case that one of the data sets $L A B^{*} L C H^{*}$, $l a b^{*} o l v_{3}^{*}$, and $l a b^{*} n c e^{*}$ is given. Therefore in the following if one of these data sets is given the other two shall be calculated.

Given data set:

$L A B^{*} L C H^{*}$
$l a b^{*}{ }^{\prime} v^{*}{ }_{3}$
lab*nce*

data set to be calculated:

lab*olv ${ }_{3}$	lab*nce*
$L A B^{*} L C H^{*}{ }_{a}$	lab*nce*
$L A B^{*} L C H^{*}{ }_{a}$	lab* $^{*}{ }^{*} v^{*}{ }_{3}$

lab*nce*
lab*olv* ${ }_{3}$

In the general case for the solution of this problem the equations (1) to (15) and the inverse equations are used. Figure 11 calculates the transformations according to the equations (1) to (15). If the following tables 3 and 4 are used then the solution is faster and this is shown in the following figures 12 to 14 .
Table 3 serves for the determination of lab*olv ${ }_{3, \mathrm{M}}$ and $L A B^{*} L C H^{*}$ am of the maximum colour M as function of the CIELAB hue angle $H^{*}{ }_{a}=h_{\mathrm{ab}, \mathrm{a}}$ with differences $\Delta H^{*}{ }_{\mathrm{a}}=10$ degree. The hue angle difference $\Delta H^{*}{ }_{\mathrm{a}}=10$ degree is for many applications to rough and therefore a table with the difference $\Delta H^{*}{ }_{a}=1$ degree is recommended, see the data for 8 device systems (64 pages, 2,1 Mbyte) at the URL:
http://www.ps.bam.de/YE00/10L/LO0E00NP.PDF

Colorimetric supplement for DIN 33872-1 to -6

Table 3 - Table for the determination of $l a b^{*} o V^{*}{ }_{3, \mathrm{M}}$ and $L A B^{*} L C H^{*}{ }_{a, \mathrm{M}}$ as function of $H^{*}{ }_{a}=h_{a b, a}$

Table 3 serves for the determination of the colour data $l a b^{*}{ }^{\circ} / v^{*}{ }_{3, \mathrm{M}}$ and $L A B^{*} L C H^{*}{ }_{\mathrm{am}}$ of the maximum colour M as function of the CIELAB hue angle $H^{*}{ }_{a}=h_{a b, a}$ for the hue angle difference of $\Delta H^{*}{ }_{a}=10$ degree.

Tabelle 4 - Relation between the elementary hue angle $\boldsymbol{H}_{\mathrm{e}}^{\star}=\boldsymbol{h}_{\mathrm{ab}, \mathrm{e}}$ and $\boldsymbol{H}_{\mathrm{a}}^{\star}=\boldsymbol{h}_{\mathrm{ab}, \mathrm{a}}$, and vice versa.

Table: CIELAB hue angle $\boldsymbol{h}_{\text {ab,a }}$ of the System NRS18 and transfer
to hue angles in the standard (s) or elementary (e) colour system

	h	$h_{\text {ab, }}$	$h_{\mathrm{s}}^{*} \quad h^{*}{ }_{\mathrm{e}}=e^{*}$	$h_{\text {ab }}$	aba	a $h_{\text {ab,e }}$		$h^{*} \quad h^{*}=e^{*}$				h	h^{*}	h^{*}
0	3	340	0.0	0	357	337	0.0	0.9920 .937	0	26	30		.0710.0.	. 001
10	14	348	0.0280 .0380 .966	10	7	345	0.028	80.0180 .959	10	33	37	0.028	0.	. 028
20	24	356	0.0560 .0670 .988	20	16	352	0.056	0.0440 .979	20	40	43	0.05	60.112	. 054
30	34	6	0.0830 .0950 .016	30	25	359	0.083	30.0710 .999	30	48	50	0.08	0.133	0.084
40	43	19	0.1110 .120 .054	40	37	15	0.1	0.1020 .043	40	55	57		0.154	0.11
50	52	33	0.1390 .1440 .091	50	48	30	0.1	0.1330 .084	50	63	64		0.174	0.14
60	61	46	0.1670 .1690 .129	60	59	45	0.1	0.1640 .125	60	70	70		0.195	. 166
70	70	60	0.1940 .1940 .166	70	70	60	0.19	0.1950 .166	70	78	77		0.215	. 196
80	79	73	0.2220 .2190 .204	80	81	75	0.222	0.2250 .207	80	85	83	0.22	0.23	0.222
90	88	87	$0.25 \quad 0.2440 .241$	90	92	89	0.25	0.2560 .249	90	92	90	0.2	0.257	0.249
100	97	100	0.2780 .2680 .277	100	104	105	0.278	0.2890 .292	100	100	97	0.278	0.2	0.277
110	105	113	0.3060 .2920 .313	110	116	120	0.306	0.3210 .335	110	108	103	0.306	0.3	0.306
120	114	126	0.3330 .3160 .349	120	127	135	0.33	0.3540 .374	120	116	110	0.33	0.32	0.335
130	122	139	0.3610 .340 .385	130	139	150	0.361	0.3860 .417	130	123	116	0.36	0.34	0.36
140	131	151	0.3890 .3640 .421	140	151	166	0.3	0.4180 .46	140	131	123	0.3	0.3	88
150	140	164	0.4170 .3880 .456	150	162	180	0.41	0.4510 .499	150	139	130	0.4	70.386	17
160	148	177	0.4440 .4110 .492	160	171	187	0.4	0.4760 .52	160	147	137	0.4	0.407	0.446
170	159	186	0.4720 .440 .518	170	180	195	0.47	0.5010 .541	170	154	143		0.429	1
180	169	195	0.50 .4710 .541	180	190	203	0.5	0.5270 .564	180	162	150	0.5	0.45	0.499
190	180	203	0.5280 .5010 .564	190	199	210	0.52	0.5520 .584	190	174	163	0.5	0.48	27
200	191	211	0.5560 .5320 .587	200	208	218	0.55	0.5770 .605	200	186	176		0.51	554
210	202	219	0.5830 .5620 .609	210	217	225	0.5	0.6030 .625	210	199	190	0.5	0.552	源
220	213	228	0.6110 .5930 .632	220	226	233	0.6	. 6280.646	220	211	203	0.6	0.585	0.612
230	224	236	0.6390 .6230 .655	230	235	240	0.6	0530.667	230	223	217	0.6	0.619	0.639
240	235	244	0.6670 .6530 .678	240	244	247	0.6	0.6790 .687	240	235	230	0.6	70.653	. 667
250	246	252	0.6940 .6840 .701	250	253	255	0.6	. 7040.708	250	247	243		0.687	694
260	257	261	0.7220 .7140 .724	260	263	263	0.7	0.7290 .731	260	259	256	0.7	0.72	0.72
270	268	269	0.750 .7450 .747	270	272	270	0.75	0.7550 .751	270	271	269	0.75	0.75	0.749
280	279	277	0.7780 .7740 .769	280	281	277	0.7	0.7810 .771	280	284	283	0.7	0.78	777
290	289	285	0.8060 .8040 .791	290	291	285	0.8	0.8070 .793	290	297	297	0.8	0.8	. 806
300	300	292	0.8330 .8330 .812	300	300	292	0.8	0.8340 .812	300	310	310	0.8	0.86	0.834
310	310	300	0.8610 .8620 .834	310	310	300	0.861	$\begin{array}{lll}0.86 & 0.834\end{array}$	310	322	323	0.8	0.895	0.861
320	321	308	0.8890 .8910 .856	320	319	307	0.8	0.8860 .854	320	335	337	0.8	0.93	0.889
330	331	316	0.9170 .9210 .878	330	329	315	0.9	0.9130 .876	330	348	350	0.9	0.96	918
340	342	324	0.9440 .950 .9	340	338	322	0.944	0.9390 .896	340	0	3	0.9	0.001	4
350	353	332	0.9720 .9790 .922	350	348	330	0.972	20.9650 .918	350	13	17	0.9	0.03	72
0	3	340	$\begin{array}{lll}0.0 & 0.009 & 0.944\end{array}$	0	357	337	0.0	0.9920 .937	0	26	30	0.0	0.071	0.001

Table 4 serves for the determination of the standard hue angle $H_{s}^{*}=h_{\mathrm{ab}, \mathrm{s}}$ and the elementary hue angle $H_{\mathrm{e}}^{*}=h_{\mathrm{ab}, \mathrm{e}}$ as function of the adapted CIELAB hue angle $H_{\mathrm{a}}^{*}=h_{\mathrm{ab}, \mathrm{a}}$ for the hue angle difference of $\Delta H^{*}=10$ degree and in the inverse direction.

Colorimetric supplement for DIN 33872-1 to -6

The hue angle difference $\Delta H^{*}{ }_{a}=10$ degree is for many applications to rough and therefore a table with the difference $\Delta H^{\star}{ }_{a}=1$ degree is recommended.
Especially in the case with pixel graphics of for example 1 million pixels (1000×1000 image matrix) the transformation with table data is much faster compared to the method in figure 11 , see also figure 12 to 14 . In application for each pixel about 5 to 20 mathematical operations are necessary.
NOTE: In the following for any colour F no index is used but for the maximum colour M the index M is always used.

Equations: colorimetric data transfer from $\mathrm{LCH}^{*}{ }_{\text {a }}$ (CIELAB) to nce^{*} and $\mathrm{olv}^{*}{ }_{3}$		
Given: CIELAB data of any colour $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}=L C H^{*}{ }_{\mathrm{a}}=L A B^{*} L C H^{*}{ }_{\mathrm{a}}$ or $L^{*}, a^{*}{ }_{\mathrm{a}}, b^{*}{ }_{\mathrm{a}}$ CIELAB data $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}, a^{*}{ }_{\mathrm{a}}, b^{*}{ }_{\mathrm{a}}$ of eigth basic colours $X=$ OYLCVMNW		
Aim: $\boldsymbol{n c e}{ }^{*}$ and $r g b$ device data $\boldsymbol{o l v} \nu^{*}{ }_{3}$ of the given colour (in example M located between O and Y)		
CIELAB Hue angle of colour and maximum colour M	$h_{\mathrm{ab}, \mathrm{a}}=h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}} \quad\left(0<=h_{\mathrm{ab}, \mathrm{a}}<=360\right)$	(1)
Relative device hue angle ratio of M	$\alpha_{\mathrm{a}, \mathrm{M}}=\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}-h_{\mathrm{ab}, \mathrm{a}, \mathrm{O}}\right] /\left[h_{\mathrm{ab}, \mathrm{a}, \mathrm{Y}}-h_{\mathrm{ab}, \mathrm{a}, \mathrm{O}}\right]$	(2)
CIELAB lightness of M	$L^{*}{ }_{\mathrm{M}}=\alpha_{\mathrm{a}, \mathrm{M}} L^{*}{ }_{\mathrm{a}, \mathrm{Y}}+\left(1-\alpha_{\mathrm{a}, \mathrm{M}}\right) L^{*}{ }_{\mathrm{a}, \mathrm{O}}$	(3)
CIELAB red-green chroma of M	$a^{*}{ }_{\mathrm{a}, \mathrm{M}}=\alpha_{\mathrm{a}, \mathrm{M}} a^{*}{ }_{\mathrm{a}, \mathrm{Y}}+\left(1-\alpha_{\mathrm{a}, \mathrm{M}}\right) a^{*}{ }_{\mathrm{a}, \mathrm{O}}$	(4)
CIELAB yellow-blue chroma of M	$b^{*}{ }_{\mathrm{a}, \mathrm{M}}=\alpha_{\mathrm{a}, \mathrm{M}} b^{*}{ }_{\mathrm{a}, \mathrm{Y}}+\left(1-\alpha_{\mathrm{a}, \mathrm{M}}\right) b^{*}{ }_{\mathrm{a}, \mathrm{O}}$	${ }^{(5)}$
radial CIELAB chroma of M	$C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=\left[a^{*}{ }_{\mathrm{a}, \mathrm{M}}{ }^{2}+b^{*}{ }_{\mathrm{a}, \mathrm{M}}\right]^{1 / 2}$	(6)
relative lightness of the given colour	$l^{*}=\left[L^{*}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right]$	(7)
relative chroma of the given colour	$c^{*}=C^{*}{ }_{\text {ab,a }} / C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$	(8)
relative triangle lightness of the given colour	$t^{*}=l^{*}-\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right] c^{*}+0,5 c^{*}$	(9)
relative blackness of the given colour	$n^{*}=1-t^{*}-0,5 c^{*}$	(10)
relative whiteness of the given colour	$w^{*}=1-n^{*}-c^{*}$	(11)
elementary hue angle of the given colour	$e^{*}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right] \quad$ (with table/equation)	(12)
relative $o l v * 3, \mathrm{M}$ data of M	$o^{*}{ }_{3, \mathrm{M}}=\alpha_{\mathrm{a}, \mathrm{M}} o^{*}{ }_{3, \mathrm{Y}}+\left(1-\alpha_{\mathrm{a}, \mathrm{M}}\right) o^{*}{ }_{3, \mathrm{O}}$	(13)
relative olv*3 data of the given colour	$l^{*}{ }_{3, \mathrm{M}}=\alpha_{\mathrm{a}, \mathrm{M}} l^{*}{ }_{3, \mathrm{Y}}+\left(1-\alpha_{\mathrm{a}, \mathrm{M}}\right) l^{*}{ }_{3, \mathrm{O}}$	(14)
	$v^{*}{ }_{3, \mathrm{M}}=\alpha_{\mathrm{a}, \mathrm{M}} v^{*}{ }_{3, \mathrm{Y}}+\left(1-\alpha_{\mathrm{a}, \mathrm{M}}\right) v^{*}{ }_{3, \mathrm{O}}$	(15)
	$o^{*}{ }_{3}=w^{*}+c^{*} o^{*}{ }_{3, \mathrm{M}}$	(16)
	$l^{*}{ }_{3}=w^{*}+c^{*} l^{*}{ }_{3, \mathrm{M}}$	(17)
	$v^{*}{ }_{3}=w^{*}+c^{*} v^{*}{ }_{3, \mathrm{M}}$	(18)

Figure 11 - Transformation of given data $L A B^{*} L C H_{a}^{*}$ to $l a b^{*} o l v^{*}{ }_{3}$ and lab*nce*
Figure 11 shows the transformations of the given data $L A B^{*} L C H^{*}$ to $l a b^{*} O V^{*}{ }_{3}$ and $l a b^{*} n c e^{*}$. For this transformation except for the calculation of e^{*} the equations (1) to (15) are used. In the example it is assumed that the hue angle of the (orange) maximum colour M is located between the hue angle of the colours orange red O and yellow Y.
The calculation with the relative hue angle ratio $\alpha_{\mathrm{a}, \mathrm{M}}$ according to figure 11 requires more calculation time for large image matrices, for example of 1000×1000 points, compared to the method in figure 12 to 14 which uses the table data for the maximum colours M as function of the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}}$.
Therefore the table method is preferred in the following. The necessary tables 3 and 4 for this calculation include data for the CIELAB hue angle difference of $\Delta h_{\mathrm{ab}}=10$ degree. The hue angle difference $\Delta H^{*}=10$ degree is for many applications to rough and therefore a table with the difference $\Delta H^{*}=1$ degree is recommended, see the data for 8 device systems (64 pages, 2,1 Mbyte) at the URL:
http://www.ps.bam.de/YE00/10L/L00E00NP.PDF
In many cases one may calculate colour profiles for the input and output. Also for the calculation of colour profiles with for example $25 \times 25 \times 25$ rgb data and corresponding $L^{*}, a^{*}{ }_{a}, b^{*}{ }_{a}$ data the tables are appropriate with the CIELAB hue angle difference of $\Delta h_{\mathrm{ab}}=1$ degree. In the following the faster calculation method with the table data is shown. The method of figure 12 uses table data and is an alternate method compared to figure 11.

Equations: colorimetric data transfer from LCH $^{*}{ }_{\mathrm{a}}(\mathrm{CIELAB})$ to nce ${ }^{*}$ and $\mathrm{olv}^{*}{ }_{3}$			
Given: adapted CIELAB data of any colour $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}=L C H^{*}{ }_{\mathrm{a}}=L A B^{*} L C H^{*}{ }_{\mathrm{a}}$ adapted CIELAB data $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, \boldsymbol{h}_{\mathrm{ab}, \mathrm{a}}, a^{*}{ }_{\mathrm{a}}, \boldsymbol{b}^{*}{ }_{\mathrm{a}}$ of eigth basic colours $X=$ OYLCVMNW Aim: $\boldsymbol{n c e}{ }^{*}$ and $r \boldsymbol{g} b$ device data $o l v *_{3}$ of the given colour			
hue angle of of the given colour and of M	$h_{\mathrm{ab}, \mathrm{a}}=H^{*}{ }_{\mathrm{a}}$		(1)
CIELAB $L C H * *{ }_{\mathrm{a}, \mathrm{M}}$ data of maximum colour M	$L{ }^{*} \mathrm{M}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$	(with table/equation)	(2)
	$C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=$ function $\left[h_{\mathrm{ab},}\right.$	(with table/equation)	(3)
	$h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=h_{\mathrm{ab}, \mathrm{a}}$		(4)
relative lightness of the given colour	$l^{*}=\left[L^{*}-L^{*} \mathrm{~N}\right] /\left[L^{*}{ }_{\mathrm{W}}\right.$	* ${ }_{\text {] }}$	(5)
relative chroma of the given colour	$c^{*}=C^{*}{ }_{\mathrm{ab}, \mathrm{a}} / C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$		(6)
relative triangle lightness of the given colour	$t^{*}=l^{*}-\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /[$	$\left.{ }^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right] c^{*}+0,5 c^{*}$	(7)
relative blackness of the given colour	$n^{*}=1-t^{*}-0,5 c^{*}$		(8)
relative whiteness of the given colour	$w^{*}=1-n^{*}-c^{*}$		(9)
elementary hue angle of the given colour relative $o l v{ }^{*}{ }_{3, M}$ data of maximum colour M	$e^{*}=$ function $\left[h_{\text {ab,a }}\right]$	(with table or equation)	10)
	$o^{*}{ }_{3, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$	(with table/equation)	(11)
relative $o l v^{*} 3$ data of the given colour	$l^{*}{ }_{3, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$	(with table/equation)	(12)
	$v^{*}{ }_{3, \mathrm{M}}=$ function [$h_{\mathrm{ab}, \mathrm{a}}$]	(with table/equation)	(13)
	$o^{*}{ }_{3}=w^{*}+c^{*} o^{*}{ }_{3, \mathrm{M}}$		(14)
	$l^{*} 3_{3}=w^{*}+c^{*} l^{*}{ }_{3, \mathrm{M}}$		(15)
	$v^{*}{ }_{3}=w^{*}+c^{*} v^{*}{ }_{3, \mathrm{M}}$		(16)

Figure 12 - Transformation of given data $L A B^{*} L C H^{\star}$ to $l a b^{*} n c e^{*}$ and lab*olv* ${ }_{3}$
Figure 12 shows the transformations of the given data $L A B^{*} L C H_{a}^{*}$ to lab*nce* and lab*olv* ${ }_{3}$. For this transformation the table data according to table 3 and 4 are used.

Equations: colorimetric data transfer from $n c e^{*}$ to $o l \nu^{*}{ }_{3}\left(\mathbf{r g b}\right.$ data) and $\mathbf{L C H}^{*}{ }_{\mathrm{a}}$			
adapted CIELAB data $L^{*}, C^{*}{ }_{\mathrm{ab}, \mathrm{a}}, h_{\mathrm{ab}, \mathrm{a}}, a^{*}{ }_{\mathrm{a}}, b^{*}{ }_{\mathrm{a}}$ of eigth basic colours $X=$ OYLCVMNW			
Aim: $\boldsymbol{r g b}$ device data $o l v^{*}{ }_{3}$ and $L C H^{*}{ }_{\mathrm{a}}$ of the given colour			
elementary hue number of a colour		($0<=e^{*}<=1$)	(1)
CIELAB hue angle of colour and maximum colour Mrelative whiteness of the given colour	$h_{\mathrm{ab}, \mathrm{a}}=$ function $\left[e^{*}\right]$	(with table/equation)	2)
	$w^{*}=1-n^{*}-c^{*}$		(3)
relative triangle lightness of the given colour	$t^{*}==1-n^{*}-0,5 c^{*}$		(4)
olv* ${ }_{3, \mathrm{M}}$ data of maximum colour M	$o^{*}{ }_{3, \mathrm{M}}=$ function [$h_{\text {ab,a }}$]	(with table/equation)	(5)
	$l{ }_{3, \mathrm{M}}=$ function [$h_{\mathrm{ab}, \mathrm{a}}$]	(with table/equation)	(6)
	$v^{*}{ }_{3, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right]$	(with table/equation)	(7)
relative olv*3 data of the given colour	$o^{*}{ }_{3}=w^{*}+c^{*} o^{*}{ }_{3, \mathrm{M}}$		(8)
	$l{ }^{*} 3=w^{*}+c^{*} l^{*}{ }_{3, \mathrm{M}}$		(9)
	$v^{*} 3=w^{*}+c^{*} v^{*} 3, \mathrm{M}$		10)
adapted CIELAB $L C H{ }^{*}{ }_{\mathrm{a}, \mathrm{M}}$ data of maximum colour M	$L^{*} \mathrm{M}=$ function [$h_{\mathrm{ab}, \mathrm{a}}$]	(with table/equation)	(11)
	$C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=$ function $\left[h_{\mathrm{ab}, \mathrm{a}}\right.$]	(with table/equation)	(12)
	$h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}=h_{\mathrm{ab}, \mathrm{a}}$		(13)
relative lightness of maximum colour M relative lightness of the given colour adapted CIELAB $L C H^{*}{ }_{a}$ data of the given colour	$l^{*} \mathrm{M}=\left[L^{*} \mathrm{M}-L^{*} \mathrm{~N}\right] /\left[L^{*} \mathrm{~W}\right.$	$-L^{*} \mathrm{~N}$]	(14)
	$l^{*}=t^{*}+l^{*} \mathrm{M} c^{*}+0,5 c^{*}$		(15)
	$L^{*}=l^{*}\left[L^{*} \mathrm{~W}-L^{*} \mathrm{~N}\right]+L^{*}$		(16)
	$C^{*}{ }_{\mathrm{ab}, \mathrm{a}}=c^{*} C^{*}{ }_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$		(17)
	$h_{\mathrm{ab}, \mathrm{a}}=h_{\mathrm{ab}, \mathrm{a}, \mathrm{M}}$		(18)

Figure 13 - Transformation of given data lab*nce* to lab $^{*} 0 / v^{*}{ }_{3}$ and $L A B^{*} L C H^{*}{ }_{a}$
Figure 13 shows the transformations of the given data $l a b^{*} n c e^{*}$ to $l a b^{*} / v^{*}{ }_{3}$ and $L A B^{*} L C H^{*}$.. For this transformation the table data according to table 3 and 4 are used.

Colorimetric supplement for DIN 33872-1 to -6

Figure 14 - Transformation of given data $l a b^{*} o l v_{3}^{*}$ to $l a b^{*} n c e^{*}$ and $L A B^{*} L C H^{*}{ }_{a}$
Figure 14 shows the transformations of the given data lab*olv*3 to lab*nce* and $L A B^{*} L C H^{*}$. For this transformation the table data according to table 3 and 4 are used.
If tables by some reasons should not be used then there are equation examples under the following URL (1 page, 60 kByte)
http://www.ps.bam.de/ZE20/10L/L20E00NP.PDF
There are different equation examples:

1. For the transformation of the CIELAB hue angle ratio h_{ab} to the elementary hue number e^{*} and in the inverse direction
2. For the transformation of the standard hue angle $h_{\mathrm{ab}, \mathrm{s}}$ to the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}}$

8. CIELAB colour system and application limits

The CIELAB system serves as basis for the description of properties of colour vision. A first test of each new colorimetric model of colour vision is therefore usually a comparison of the new model spacing compared to the spacing in the Munsell and/or the OSA colour order systems. CIELAB is based on the Munsell colour system and there is a paper of Richter (1980) with colour reproductions of the colour samples of the Munsell and the OSA colour system in different chromaticity diagrams. Some of the following pictures are taken from this paper and a book of Richter (1996).

Figure 15 - Real and extrapolated samples of the Munsell colour order system (Value 5) in (x, y), and (a,b) Figure 15 shows real (o) and extrapolated samples (\cdot) of the Munsell colour system for Value 5 in the CIE chromaticity diagram (x, y) and a special chromaticity diagram (a, b). The relation between the chromaticity coordinates (a, b) and (x, y) is linear and given in figure 15 (right).

Figure 16 - Coordinates of the lower colour metric and chromaticity coordinates (a, b)
Figure 16 shows coordinates of the lower colour metric and the chromaticity coordinates (a, b) which have a linear relation to the CIE chromaticity coordinates (x, y). The chromatic values A and B can be calculated by multiplying the luminance factor Y of the sample with the difference of the chromaticities a of the sample and a_{n} of the background.

Additionally the chromaticity a and b can be compared with the saturation $P /(P+D)$ and $T /(P+D)$ of the three receptors P, D and T or $L M S$ according to CIE 171-1:2005. For example in Figure 16 the ratio $Z / Y=z / y=[(1-x-y)$ $/ y$] is similar to the ratio $T /(P+D)$.

Higher colormetric (color data: nonlinear relation to CIE 1931 data)		
non linear color terms	name and relationship with tristimulues or chromaticity values	notes
lightness	$\begin{aligned} & L^{*}=116(Y / 100)^{1 / 3}-16 \quad(Y>0,8) \\ & \text { Approximation: } L^{*}=100(Y / 100)^{1 / 2,4} \end{aligned}$	CIELAB 1976
chroma red-green yellow-blue radial	non linear transform of chromatic values A and B $\begin{aligned} a^{*} & =500\left[\left(X / X_{\mathrm{n}}\right)^{1 / 3}-\left(Y / Y_{\mathrm{n}}\right)^{1 / 3}\right] \\ & =500\left(a^{\prime}-a_{\mathrm{n}}^{\prime}\right) Y^{1 / 3} \\ b^{*} & =200\left[\left(Y / Y_{\mathrm{n}}\right)^{1 / 3}-\left(Z / Z_{\mathrm{n}}\right)^{1 / 3}\right] \\ & =500\left(b^{\prime}-b_{\mathrm{n}}^{\prime}\right) Y^{1 / 3} \\ C^{*} & =\left[a^{*^{2}}+b^{*^{2}}\right]^{1 / 2} \end{aligned}$	$\begin{aligned} & \text { CIELAB } 1976 \\ & n=D 65 \text { (backgr.) } \\ & \text { CIELAB } 1976 \end{aligned}$
chromaticity red-green yellow-blue radial	nonlinear transform of chromaticities $a=x / y$ and $b=z / y$ $\begin{aligned} a^{\prime} & =\left(1 / X_{\mathrm{n}}\right)^{1 / 3}(x / y)^{1 / 3} \\ & =0,2191(x / y)^{1 / 3} \text { for D65 } \\ b^{\prime} & =-0,4\left(1 / Z_{\mathrm{n}}\right)^{1 / 3}(z / y)^{1 / 3} \\ & =-0,08376(z / y)^{1 / 3} \text { for D65 } \\ c^{\prime} & =\left[\left(a^{\prime}-a_{\mathrm{n}}^{\prime}\right)^{2}+\left(b^{\prime}-b_{\mathrm{n}}^{\prime}\right)^{2}\right]^{1 / 2} \end{aligned}$	compare to log cone excitation $\log [P /(P+D)]$ $\log [T /(P+D)]$

Figure 17 - Coordinates of the higher color metric with non linear chromaticity coordinates (a^{\prime}, b^{\prime})
Figure 17 shows coordinates of the higher color metric with non linear chromaticity coordinates (a^{\prime}, b^{\prime}). The CIELAB chroma data a^{*} and b^{*} can be calculated if the non linear chromaticity difference a^{\prime} of the sample and a_{n}^{\prime} of the background (n) is multiplied with the lightness L^{*} of the sample (in this case the approximation $Y^{1 / 3}$). This kind of calculation is similar compared to the calculation in the CIELUV colour space. Additionally the non linear chromaticity coordinates a'and b'are compared with the saturation $\log [P /(P+D)]$ and $\log [T /(P+D)]$. The cube root coordinates
$(Z / Y)^{1 / 3}=(z / y)^{1 / 3}=[(1-x-y) / y]^{1 / 3}$ are similar to $\log [T /(P+D)]$.

Figure 18 - Real and extrapolated samples of the Munsell colour system (Value 5) in (a^{\prime}, b^{\prime})
Figure 18 shows real (0) and extrapolated (\cdot) samples of the Munsell colour system for Value $\mathrm{V}=5$ in the non linear chromaticity diagram (a^{\prime}, b^{\prime}) (left) and the elementary hues $5 R, 5 Y, 5 G$ and $5 P B$ of the Munsell colour order system for Value 2, 5 , and 8 in the non linear (cube root) chromaticity diagram (a^{\prime}, b^{\prime}) (right). Additionally the four CIE-test colours no. 9 to 12 of CIE 13.3 are shown. These four CIE-test colours serve as elementary colours in the field of image technology, see Richter (2007).

The CIELAB data of the four elementary colours have been calculated for the CIE standard illuminant D65 and the CIE illuminant D50, see table 7 in section 10. The CIE-test colours serve for example in DIN 33866-2, and in ISO/ IEC 15775 as reference colours for colour copiers and in ISO/IEC TR 24705 as reference colours for printer and monitor output and for scanner input.

In Figure 18 (right) the elementary colours yellow J and blue B are located approximately on a straight line through the white point (chromaticity of D65). The elementary colours red R and green G are not on a line through the white point. For D65 the elementary colours RJGB have the CIELAB hue angles $h_{\mathrm{ab}}=26,92,162$ and 272 degree in the CIELAB system.
DIN 33872-1 to -6 uses the device independent location of the CIELAB hue angles of the elementary colours, and increases so especially the user acceptance.

Figure 19 - Samples of the Munsell and OSA system in a modified chromaticity diagram (a^{\prime}, b^{\prime})
Figure 19 shows samples (Value 5) of the Munsell colour system and samples (L^{*} OSA $=0$, corresponding to L^{*} CIE $=$ 50) of the OSA system in a modified chromaticity diagram (a^{\prime}, b^{\prime}). The relation between (a^{\prime}, b^{\prime}) and (x, y) and between ($a^{\prime}{ }_{10}, b^{\prime}{ }_{10}$) and (x_{10}, y_{10}) for the 10 degree observer is shown in the figure 19 . According to the results of the output scaling, see Richter (1976 and 1996) it is possible to use a linear equation in red-green direction, see the definition of a^{\prime} and $a^{\prime}{ }_{10}$ in the figure. This linear equation is appropriate for the chromaticity range of surface colours which is represented by the real Munsell (left) and OSA (right) samples. This area of all real surface colours fills only about 30% of the optimal colour gamut. Optimal colours have rectangular reflection curves.

Application limits for colour spacing of CIELAB

Figure 19 shows in comparison to Figure 18 an improved colour spacing for the colour series White-Yellow for both the samples of the Munsell and the OSA system. This property is important for many applications with surface colours. There yellow standard surface colours of offset printing is located approximately on the spectral locus of the chromaticity diagrams (x, y) or (a, b) or ($\left.a^{\prime}, b^{\prime}\right)$. The yellow display colour which is mixed by the orange red O and leaf green device colours L is located much more inside the chromaticity diagrams. For example in CIELAB for a photo printer the chroma $C^{*}{ }_{a b}$ is equal to 115, and for the standard Monitor TLS18 the chroma $C^{*}{ }_{a b}$ is approximately equal to 60 . Instead of the ratio $115 / 60$ in CIELAB the ratio is $80 / 58$ in the (corrected) space LABHNU1 1979. This ratio is much more appropriate compared to visual results. CIELAB therefore calculates a too large colour difference for saturated yellows in the white-yellow direction. Therefore the visual differences decrease for the series white-yellow towards saturated yellow if the series is equally spaced in CIELAB.
Additionally in red-green direction for saturated green colours a too high CIELAB difference is calculated in the white-green direction. This effect is less important in applications because there are usually no surface colours in this area.

In CIELAB the elementary hue blue B and the elementary hue red R show a hue angle shift as function of sample lightness. If we study for example the elementary blue colour B ($h_{\mathrm{ab}}=272$ degree) of the same chromaticity and for the three lightness data $L^{*}=20,50$ and 80 then the light sample appears more reddishcompared to the dark sample, compare figure 18 (right).
CIELAB has been developed for separate samples on a grey background. For adjacent samples the local relative adaptation luminance in dark-light direction is active which produces for small colour differences a change of the colour discrimination metric. For small colour differences and adjacent samples the colour difference formula CIEDE2000 has been developed, compare CIE 142:2001 which is applicable for colour differences between 0 and 5 CIELAB. In the field of colour image technology colour differences larger 5 CIELAB are usual between the original and the reproduction. Therefore the industrial colour difference calculation with the formula CIEDE2000 of CIE 142 is not applicable. The application range of CIEDE2000 is under study in the technical committee CIE TC1-63 "Validity of CIEDE2000" with K. Richter as chairman.

Application range of CIELAB for different illuminants

CIE 15:2005 defines two CIE standard illuminants D65 (daylight) and A (approximately tungsten light) and other illuminants, for example D50, D55, and D75. For the field of standardisation CIE 15 recommends one of the two standard illuminants D65 or A. In the office area the standard illuminant D65 is produced by daylight in the office. CIE TC1-66 defines at present an "indoor daylight" which assumes D65 outside the office and which considers the absorption of the technical window glass. The window glass absorbs especially in the UV region. There are only small changes of the spectral power distribution of D65 in the visible range.
According to DIN 18599-4 in the EU for every new office building an energy passport is required. Both the use of daylight in the office with enough large windows and not to large room deepness increase the saving of energy.
According to IEC 61966-2-1 the standard monitor has the default chromaticity of white D65.If the standard office luminance is produced then a new monitor adjustment to the chromaticity D50 requires in general an electrical energy consumption which is 20% to 30% higher compared to D65. Therefore the use of the chromaticity D50 in the office is not appropriate to save energy. Therefore in the office area for the comparison of hardcopy and softcopy by many reasons the CIE standard illuminant D65 is recommended.
In DIN 33866-1 and ISO/IEC 15775 the CIE standard illuminant D65 is used in all steps: for the definition of the analog test charts, for the production, for the visual assessment, and for the colorimetric specification.

D65 and D50 in standards

ISO TC 130 (Graphic Technology) has chosen the CIE illuminant D50 as standard by different reasons. By history at the printing work places at first slides, which have been optimized for CIE standard illuminant A in the projection, must be compared with the prints under daylight D65. For this comparison the illuminant D50 was a compromise as this illuminant is intermediate between the illuminants A and D65.
At the printing work places the use of daylight by windows is often not possible because of the large room deepness which is necessory for the large printing machines and often too variable. Therefore artificial light sources, at least in a colour comparison booth, are necessary with defined properties. The light sources in any colour comparison booth usually produce the CIE standard illuminants D65 and A, and the standard illuminant D50 of ISO TC 130.
The illuminant D50 produces only about half of the radiation near 400 nm compared to D65. For example this different radiation changes the colour of white office or photo paper which both include optical brighteners. This colour change by fluorescence is often 10 CIELAB for D65 and about 5 CIELAB for D50. However, most of the $x y$ standard devices used in the graphic industry can not measure this colour change by fluorescence, compare CIE 163. However, these changes influence the visual assessment to a high degree, for example by the comparison of the softcopy (monitor without fluorescence) and the hardcopy (paper with fluorescence). Because of these application problems and for the often necessary comparison of the measuring results the measurement without fluorescence is under consideration in new draft standards of ISO TC 130.
The Technical Report CIE 163 describes the possibilities of an improved colour measurement in the standard case of fluorescent white office papers with measurement devices which include quartz optic instead of artificial optic. An improved measurement method for images is described in a Ph.D. thesis of S. Jaeger (2006). A BAM-CIELAB camera measures the spectral power distribution at each image point (including the visual spectral power distribution produced by fluorescence) for a D65 illumination and calculates the CIELAB data for each image point with a standard deviation of 2 CIELAB. For an appropriate measurement of fluorescence a D65 taking illuminant is necessary.

Problems in application of CIELAB for D50

The colour space CIELAB has been developed for the CIE standard illuminant D65, and is based on experimental results with the former CIE standard illuminant C which is replaced by the CIE standard illuminant D65 with approximately the same colour temperature. CIE 15 limits the application for illuminants similar to D65. A tolerance is not defined.
The application of CIELAB for D50 is therefore allowed according to CIE 15. CIELAB for D50 and for D65 use both an included "von Kries chromatic adaptation formula". In CIE 160 a different chromatic adaptation formula is recommended for tests. According to this technical report the "von Kries chromatic adaptation formula" of CIELAB is less appropriate. Therefore indirectly the use of CIELAB for D50 is not recommended but the use of CIELAB for D65 and the chromatic adaptation formula according to CIE 160 if D50 must be used by some reasons.

Relative colour image reproduction for D65 and D50

DIN 33872 uses the CIE standard illuminant D65 and is therefore in agreement with the recommendations of CIE 15. The studies of the colour spacing which use as alternate the CIE standard illuminant D65 and the CIE illuminant D50 in section13 show that the relative equidistant spacing under D65 is at the same time a relative equidistant spacing under D50. This is valid if the visual tolerance of 3 CIELAB is allowed which is defined in ISO/IEC 15775 for colour copiers. Therefore the visual properties under D65 are equal to the properties under D50. There is no need

9. Definition and basis for colours of equal blackness \boldsymbol{N}^{*}

Figure 20: Colour attributes $N^{*}, I^{*} W^{*} D^{*}$ and relation to chroma C^{*} and lightness L^{*}
Figure 20 shows the relations between the colour attributes blackness N^{*}, brilliantness I^{*}, whiteness W^{*}, colour deepness D^{*}, chroma C^{*} and lightness L^{*}. The colour attributes blackness N^{*} and brilliantness I^{*} as well as whiteness W^{*} and colour deepness D^{*} are complementary to each other, which means it is valid:

$$
\begin{align*}
& N^{*}=100-I^{*} \tag{1}\\
& W^{*}=100-D^{*} \tag{2}
\end{align*}
$$

Further there is the triangle equation of Ostwald (1930)

$$
\begin{equation*}
N^{*}+W^{*}+C^{*}=100 \tag{3}
\end{equation*}
$$

Additionally there are linear relations between the four coordinates N^{*}, W^{*}, L^{*} and C^{*}

$$
\begin{align*}
& N^{*}=100-\left[L^{*}+0,5 C^{*}\right] \tag{4}\\
& W^{*}=L^{*}-0,5 C^{*} \tag{5}
\end{align*}
$$

Nearly all colorimetric colour systems use three colour attributes for the specification of colours. Nearly all use the hue as the first and most important colour attribute and distinguish in the choice of the two others. In the CIELAB colour system which is based on the Munsell colour order system the two colour attributes chroma C^{*} and lightness L^{*} are preferred. In the Swedish Natural colour system NCS the blackness N^{*} instead of this lightness L^{*} has been chosen as the more important colour attribute.
Figure 20 shows in all parts separate colour samples on a grey background. In many cases adjacent colours on a grey background are shown. In both cases the colour difference is viewed and evaluated as the important colour attribute for reproduction.
For both viewing situations separated and adjacent colours the colorimetry has developed different colour metrics for the description of the colour differences. In the case of separate colour samples the CIELAB colour difference formula of 1976, see CIE 15, and in the case of adjacent colour sample the colour difference formula CIEDE2000, see CIE 142 is recommended.
The reason for the different metrics for the description of the different experimental results are to a high degree unknown. CIEDE2000 is recommended for small colour differences of adjacent colours in the range between 0 <= $\Delta E^{*}{ }_{\mathrm{ab}}<=5$. For the Munsell colour order system the colour differences of the samples of is near $\Delta E^{*}{ }_{\mathrm{ab}}=10$ for both the lightness and the chroma direction in any hue plane. Therefore in general CIELAB seems appropriate for large colour differences and CIEDE2000 for small colour differences. Additionally CIELAB seems more appropriate for separate colours and CIEDE2000 more for adjacent colours in a mean grey background.

Colorimetric supplement for DIN 33872-1 to -6

The following colorimetric model of this paper describes achromatic thresholds for the viewing situations separate and adjacent achromatic colours. Later in this paper the model describes properties of chromatic colours.
At first we will repeat the law of Weber-Fechner (Fechner 1860) which describes the colour threshold for achromatic adjacent colours. Then we will repeat the law of Stevens (1961) which describes the colour thresholds and scaling for achromatic separate colours. Then both laws are combined in a new model for achromatic colours. Later in this paper we will extend the model for chromatic adjacent and separate colours.

Figure 21 - Weber-Fechner threshold $\Delta L_{r w}$ and relative luminance L_{r} for adjacent achromatic colours
Figure 21 shows the Weber-Fechner threshold ΔL_{rw} as function of the relative luminance L_{r} for adjacent achromatic colours. The viewing situation and the results are shown with blue colours. At the same time the additional results for the viewing situation separate colours are shown by yellow dashed lines.

Figure 22 - Stevens threshold $\Delta L_{r s}$ and relative luminance L_{r} of separate achromatic colours
Figure 22 shows the Stevens threshold ΔL_{rs} as function of relative luminance L_{r} for separate achromatic colours. The viewing situation and the results are given in yellow colours. At the same time the results for the viewing situation adjacent colours are shown by blue dashed lines.

The combination of the laws of Weber-Fechner and Stevens has been described in a model by Richter (2006c). A simple explanation is given in the following:
The colour vision is a border vision and the local relative adaptation luminance $L_{r a}$ is determined by the mean luminance at the border. The relative adaptation (index a) luminance $L_{r a}$ at the border of a just noticeable relative luminance difference (no. 1 and 2) in the grey relative background luminance $L_{r b}=1$ is for:

1. adjacent samples and with $L_{r 1}$ approximately equal to $L_{r 2}=L_{r}$:

$$
\begin{equation*}
\log L_{\mathrm{ra}}=0,5\left(\log L_{\mathrm{r} 1}+\log L_{\mathrm{r} 2}\right)=\log L_{r} \tag{6}
\end{equation*}
$$

2. separate samples and because $L_{\mathrm{rb}}=1$:

$$
\begin{equation*}
\log L_{\mathrm{ra}}=0,5\left(\log L_{r}+\log L_{\mathrm{rb}}\right)=0,5 \log L_{r} \tag{7}
\end{equation*}
$$

Figure 21 shows a linear relation with the slope 1 for the Weber luminance difference ΔL_{rw}

$$
\begin{equation*}
\log \Delta L_{r w}=\log L_{r} \tag{8}
\end{equation*}
$$

Figure 22 shows a linear relation with the slope 0,5 for the Stevens luminance difference $\Delta L_{r s}$

$$
\begin{equation*}
\log \Delta L_{r s}=0,5 \log L_{r} \tag{9}
\end{equation*}
$$

With the equations (6) and (7) there is a combination of the laws of Weber-Fechner and Stevens which leads to a linear model relation for both viewing situations adjacent and separate:

$$
\begin{equation*}
\log \Delta L_{r}=\log L_{r a} \tag{10}
\end{equation*}
$$

or with linear terms

$$
\begin{equation*}
\Delta L_{r}=\text { const } L_{\mathrm{ra}} \tag{11}
\end{equation*}
$$

In the following the results are applied also for chromatic colours. A description for the colour attribute equal blackness N^{*} will be given using the relative luminance L_{r} and the purity p.
Experimental results of Evans (1974) and physiological models of colour vision seem to indicate that the colour attribute blackness N^{*} is of equal or higher importance compared to the lightness L^{*}. For naive observers it is more difficult to order colour samples on a grey or a white background according to the colour attribute lightness L^{*} in comparison to the colour attribute blackness N^{*}. This is one reason that in the NCS colour system the colour attribute blackness N^{*} is preferred compared to the lightness L^{*}.

chromatic signal B-achromatic signal

Figure 23 - Achromatic and chromatic signals for achromatic and blue colours
Figure 23 shows achromatic and chromatic signals as function of relative luminance L_{r} for both achromatic colours and a blue spectral colour with the purity $p=100$ (or $x_{p}=-\log p=-2$).
According to Valberg (2005) there are three physiological processes: I (Increment), D (decrement) and sum ($D+l$). For the achromatic colour the signals are shown in black and white. For a blue spectral colour the signals are shown in blue. The signals for the blue spectral colour are shifted by two logarithmic units to the left.
Therefore for achromatic colours the maximum luminance discrimination (maximum difference of the signals of the I process) is at the grey background luminance $L_{r b}=1$. For blue spectral colours the maximum luminance discrimination is shifted by two log units to the left (top left).
Figure 23 shows further a mark at the largest difference between the blue and achromatic signal (top right) for the $D+l$-process which is calculated for all relative luminance (bottom left) and may be interpreted as chroma signal. Two marks show the relative luminance of the maximum chromatic and chroma signals for the l - and $D+I$-process (bottom right). The model calculates the difference of the two signals for the blue and achromatic colours at any relative luminance. For the l - and the $D+l$-process the maximum chromatic and chroma signals are shifted only one (and not two) log units to the left (bottom right), compare Richter (2006c).
Among the surface colours there are only very dark blue colours of higher purity p. The more chromatic blue surface colours may have a purity ten times less compared to the spectral colour. Because of 4% surface reflection for all mate surface colours there are in a grey background with the reflection of 20% only relative luminances of 20% compared to grey (4% of 20%). Therefore the properties for the 1% relative background field luminance shown in Figure 23 can not be tested with surface colours. Only optical devices with lights and colour lasers are appropriate for this test.

Figure 24 - Physiological signals and range for changes of relative luminance and purity
Figure 24 shows physiological signals with the slope $m=1$ (Weber-Fechner law) and with the slope $m=0.5$ (Stevens law), see top left and right. A model which combines the two laws of Weber-Fechner (Fechner 1860) and Stevens (1961) for the achromatic colour series black-grey-white was developed by Richter (2006c). This model leads to the equations (10) or (11). This model for achromatic colours will be extended now for the chromatic colour series between Black and the colours Yellow, Green, Red and Blue. The purity p of these series increases from $p=1$ to $p=100$. On a log scale then with the \log purity $x_{p}=-\log p$ the range of x_{p} is between -2 and 0 , see figure 24 .
Figure 24 shows the physiological signals I (=Increment) and $D+I$ (sum process) with the slopes $m=1$ and $m=0,5$ (top left and right). The border vision and the local relative adaptation luminance $L_{r a}$ are the basis for the slopes $m=$ 1 and $m=0,5$ near the background luminance. This is known from Figures 21 and 22 . Additionally the signals are described here for very low and very large relative luminance, compare Richter (1996). The relative luminance range is several log units larger compared to the relative luminance range used in offices, compare Figures 21 and 22.
It is for example well known from the colorimetry of the colour space CIECAM02, see CIE 159, that the physiological signals are reduced with decreasing background luminance. Similar for increasing background luminance the signals increase. The signal range between the maximum and minimum value increases with approximately an exponent of the value $1 / 6$ as function of background luminance, compare Richter (1996).
It is less known in colorimetry that the physiological signals of spectral colours are shifted to the left with increasing purity p. Purity p increases from white to the spectral colours between the value 1 and a maximum value depending on the dominant wavelength. The colorimetric experimental results of Evans (1974) lead for achromatic colours to a purity value equal to the value 1 , and for chromatic spectral colours the values are approximately 2 for yellow, 10 for green, 20 for red and 100 for blue.
The purity shift by two logarithmic units for a blue spectral colour is shown in all parts of Figure 24. In the lower two figures the purity is used in $x_{p}=-\log p$ instead of the luminance in $x_{\mathrm{r}}=\log L_{\mathrm{r}}$.
The local relative adaptation luminance $L_{r a}$ has the value $1 / 100$ for the blue adjacent spectral colours. For the blue

Colorimetric supplement for DIN 33872-1 to -6

spectral separate colours in a grey background the local relative adaptation luminance $L_{r a}$ has only the value $1 / 10$ compared to the adaptation luminance of the background.
The local adaptation at the border leads to the half adaptation luminance and to the slope $m=0,5$ in Figure 25 (bottom right) in comparison to $m=1$ in Figure 24 (bottom left).

Figure 25 - Physiological signals as function of relative luminance and purity for surface colours
Figure 25 shows a model of the physiological signals as function of relative luminance $\left(L_{r}\right)$ and purity (p) for surface colours.. The purity p for blue spectral colours has approximately the value 100 . For x_{p} this leads with $x_{p}=-\log p$ to the value -2 , compare Figure 24. For blue surface colours the purity reasches the maximum value 10. For x_{p} this leads with $x_{p}=-\log p$ to the value -1 , compare Figure 25. The changes for the relative luminance $\left(L_{r}\right)$ and the purity (p) are shown in figure 25 for these surface colours.

It is appropriate to interprete the colour series with decreasing "lightness" signals as function of the purity p in Figure 25 (bottom right) as colours of equal blackness N^{*}. A interpretation as "colours of equal lightness $L^{* *}$ is forbidden, because the relative luminance L_{r} decreases for these series. For the description of such a series it is valid according to Figure 25 (bottom right).

$$
\begin{equation*}
\log L_{\mathrm{ra}}=0 \text { for } \log p=0 \tag{12}
\end{equation*}
$$

und therefore

$$
\begin{equation*}
\log L_{\mathrm{ra}}=-0,5 \log p=0,5 x_{p} \tag{13}
\end{equation*}
$$

and with

$$
\begin{equation*}
\log L_{\mathrm{ra}}=0,5\left(\log L_{r}+\log L_{u}\right)=0,5 \log L_{r} \tag{14}
\end{equation*}
$$

it follows

$$
\begin{equation*}
\log L_{r}=-\log p \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{r}=1 / p \tag{16}
\end{equation*}
$$

Therefore the relative luminances L_{r}, which we interprete in this model as colours of equal blackness $N^{*}=$ constant, are inverse proportional to the purity p. A colorimetric confirmation of this model output is missing up to now. The experimental results of Evans (1974) and of the NCS colour system may contribute to the confirmation of this model result.
We will study again the experimental results for colours of the blackness cero (GO-colours) of Evans (1974) in the Munsell and CIELAB colour system. For achromatic colours of the blackness $N^{*}=0$ the lightness value is $L^{*}=100$. With increasing chroma $\mathrm{C}^{*} \mathrm{ab}$ the lightness L^{*} decreases for equal blackness according to the following formula, compare Figure 20:

$$
\begin{equation*}
N^{*}=100-\left(L^{*}+0,5 C_{a b, a}^{\star}\right) \tag{17}
\end{equation*}
$$

The lightness is for the blackness $N^{*}=0$ given by

$$
\begin{equation*}
L_{N^{*}=0}^{*}=100-0,5 C_{a b, a}^{*} \tag{18}
\end{equation*}
$$

The lightness is for the blackness $N^{*}=50$ given by

$$
\begin{equation*}
L_{\mathrm{N}^{*}=50}^{*}=50-0,5 C_{\mathrm{ab}, \mathrm{a}}^{*} \tag{19}
\end{equation*}
$$

It was the aim of this model to present the unique property of the colours of equal blackness N^{*} in comparison to the colours of equal lightness L^{*}. In the NCS colour system the colour attribute blackness N^{*} has been choosen instead of the lightness L^{*} of the CIELAB colour system or the lightness (Value) of the Munsell colour system (Value $=10$ corresponds to $L^{*}=100$).
One can mention the following reason for the development of the visual system in the direction of blackness N^{*} : All chromatic colours decrease in their lightness L^{*} approximately linear with increasing chroma $C^{*}{ }_{\mathrm{ab}, \mathrm{a}}$, compare equation (18) or (19). Therefore for the colour vision it is appropriate to create a special colour attribute for these colour series. This leads to the colour attribute blackness N^{*}, which is described in CIELAB by the simple equation (4) in agreement with Evans (1974) and Richter (1980). For the relationship between the three colour attributes N^{*}, L^{*} and C^{*} the equation (4) is valid. The relationship between these three colour attributes is shown in Figure 20.

10. Definition and basis for elementary colours and elementary hue E^{*}

XE351-1

XE351-2

Figure 26 - Elementary hues BGJ in the spectrum according to the model of Hurvich and Jameson
Figure 26 shows the two spectral chromatic values blue-yellow and red-green which are described by two simple transformations of the CIE tristimulus values according to Hurvich (1981). The transformation equations are included in Figure 26. The values of the two chromatic functions are cero at approximately the wavelength $475 \mathrm{~nm}, 503 \mathrm{~nm}$ and 575 nm . Colours of these wavelength describe the three spectral elementary colours Blue B, Green G and Yellow J.
The cero points correspond to the visual criteria for the elementary hues Blue and Yellow as neither reddish nor greenish (left) or to the elementary hue Green as neither bluish nor yellowish (right). For the elementary colour Red the cero value appears if an appropriate mixture is used of the two spectral colours 700 nm and 400 nm . This mixture is on the purple line in the CIE chromaticity diagram and can be described by the complementary wavelength $\lambda_{\mathrm{c}}=$ 494nm compared to CIE chromaticity of D65.
In the following we will look at experimental data of surface colours instead of spectral colours. Miescher (1948) has developed three symmetric hue circles of surface colours with 24,96 and 400 steps. The four elementary colours have been defined with 28 observers under natural daylight (north sky). At that time CIE illuminant C which is now replaced by CIE standard illuminant D65 has served for the colorimetric calculations. The CIE measurement data for CIE illuminant C are similar to the CIE measurement data for CIE standard illuminant D65 if the samples are not fluorescent. All samples of the Miescher elementary hue circle are free of fluorescence.

Table 5 - Miescher elementary hues and corresponding Munsell notations

Four elementary colours and four intermediate colours		CIE tristimulues values and chromaticity for illuminant \mathbf{C} and 2 degree observer				
Hue circle	Miescher/Munsell hue	$X_{\text {c }}$	$\boldsymbol{Y}_{\mathbf{c}}$	$Z_{\text {c }}$	$x_{\text {c }}$	$y_{\text {c }}$
Elementary Red R	08/6.0R-V5	32,53	18,11	5,32	0,5813	0,3236
red yellow R50J	05/3.7YR-V5	60,31	45,44	5,55	0,5419	0,4083
Elementary Yellow J	02/8.5Y-V5	70,52	77,82	10,18	0,4449	0,4909
yellow green J50G	23/9.5GY-V5	25,23	45,15	14,00	0,2990	0,5351
Green G	20/5.9G-V5		20,24	16,28	0,1890	0,4495
green blue G50B	17/8.5BG-V5	8,83	14,56	31,55	0,1607	0,2650
Blue B	14/5.3PB-V5	11,92	9,35	48,79	0,1701	0,1335
blue red B50R	11/7.4P-V5	16,15	8,47	30,90	0,2909	0,1526

Table 5 shows the CIE data of the Miescher elementary colours and the corresponding Munsell notations for the lightness $L^{*}=50$ (Munsell Value $V=5$). In a first approximation the elementary hues Red R, Yellow J, Green G and Blue B correspond to the Munsell notations $5 R, 5 Y, 5 G$ and $5 P B$. These hues have been selected for the CIE-test colours no. 9 to 12 (Red, Yellow, Green and Blue) in CIE 13.3 ("colour rendering").

Table 6 - Miescher elementary hues, Munsell notations, and dominant wavelength

Elementary and intermediate colours					Munsell Notation (Value 5) and dominant wavelength	
Hue	Observer K.R.	G.W.	A.V.	K.M.	mean Munsell value and dominant wavelength	correction for Bezold-Brücke effect
Red R	$\begin{aligned} & 6.5 R \\ & 700 \end{aligned}$	$\begin{aligned} & 5.8 R \\ & 494 \mathrm{c} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{R} \\ & 494 \mathrm{c} \end{aligned}$	$\begin{aligned} & 5.8 \mathrm{R} \\ & 494 \mathrm{c} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{R} \\ & 494 \mathrm{c} \end{aligned}$	$\begin{array}{ll}494 \mathrm{c} & \begin{array}{l}700 \\ 495\end{array}\end{array}$
R50J	$\begin{aligned} & 3.75 \mathrm{YR} \\ & 592 \end{aligned}$	$\begin{aligned} & \text { 4.2YR } \\ & 591 \end{aligned}$	$\begin{aligned} & 3.5 \mathrm{YR} \\ & 593 \end{aligned}$	$\begin{aligned} & \text { 3.7YR } \\ & 592 \end{aligned}$	$\begin{aligned} & 3.7 \mathrm{YR} \\ & 592 \pm 1 \end{aligned}$	590 ± 2
Yellow J	$\begin{aligned} & 7.5 \mathrm{Y} \\ & 575 \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{Y} \\ & 574 \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{Y} \\ & 572 \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{Y} \\ & 572 \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{Y} \\ & 574 \pm 2 \end{aligned}$	572 ± 2
J50G	$\begin{aligned} & \text { 10GY } \\ & 542 \end{aligned}$	$\begin{aligned} & 8.75 \mathrm{GY} \\ & 550 \end{aligned}$	$\begin{aligned} & 9.0 \mathrm{GY} \\ & 548 \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{G} \\ & 536 \end{aligned}$	$\begin{aligned} & 9.5 \mathrm{GY} \\ & 544 \pm 8 \end{aligned}$	542 ± 10
Green G	$\begin{aligned} & 6.0 \mathrm{G} \\ & 502.5 \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{G} \\ & 504 \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{G} \\ & 502.5 \end{aligned}$	$\begin{aligned} & 6.7 \mathrm{G} \\ & 501.5 \end{aligned}$	$\begin{aligned} & 5.9 \mathrm{G} \\ & 503 \pm 2 \end{aligned}$	503 ± 2
G50B	$\begin{aligned} & \text { 7.5BG } \\ & 488.5 \end{aligned}$	$\begin{aligned} & 8.75 \mathrm{BG} \\ & 487.5 \end{aligned}$	$\begin{aligned} & 8.0 \mathrm{BG} \\ & 488 \end{aligned}$	$\begin{aligned} & \text { 10.0BG } \\ & 486.5 \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{BG} \\ & 488 \pm 2 \end{aligned}$	489 ± 2
Blue B	$\begin{aligned} & 5.6 \mathrm{~PB} \\ & 472 \end{aligned}$	$\begin{aligned} & \text { 5.0PB } \\ & 474.5 \end{aligned}$	$\begin{aligned} & 5.1 \mathrm{~PB} \\ & 474 \end{aligned}$	$\begin{aligned} & \text { 5.0PB } \\ & 474.5 \end{aligned}$	$\begin{aligned} & 5.3 \mathrm{~PB} \\ & 474 \pm 2 \end{aligned}$	472 ± 2
B50R	$\begin{aligned} & 7.5 \mathrm{P} \\ & 558 \mathrm{c} \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{P} \\ & 558 \mathrm{c} \end{aligned}$	$\begin{aligned} & 7.0 \mathrm{P} \\ & 560 \mathrm{c} \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{P} \\ & 558 \mathrm{c} \end{aligned}$	$\begin{aligned} & 7.4 \mathrm{P} \\ & 559 \mathrm{c} \pm 1 \end{aligned}$	$559 \mathrm{c} \pm 1$

Table 6 shows experimental Munsel/ notations and the dominant wavelength for elementary and intermediate colours of the Miescher elementary hue circle according to Richter (1969). In Table 6 the wavelengths near 475nm, 503 nm and 575 nm represent the elementary hues Blue B, Green G and Yellow J.

Table 7 - Colorimetric data of the CIE-test colours no. 9 to 12 as reference for the four elementary hues

Elementary colour and CIE illuminant		CIELAB data, CIE tristimulus values and CIE chromaticity for the CIE standard illuminant D65 and D50 and the 2 degree observer						
CIE-test colour	Ill.	$L^{*} \boldsymbol{a}^{*} \quad \boldsymbol{b}^{*}$	$C^{*} \mathrm{ab} \quad h$	\boldsymbol{X}	\boldsymbol{Y}	Z	x	y
09, Red R	D65	40,04 $588,98 \quad 28,32$	65,43 25,7	20,64	11,27	4,34	0,5693	0,3110
10, Yellow J		$\begin{array}{llll}81,30 & -2,99 & 71,82\end{array}$	71,89 92,4	54,89	59,01	12,02	0,4359	0,4686
11, Green G		52,27-42,40 13,64	44,54 162,2	12,15	20,38	15,34	0,2538	0,4258
12, Blue B		30,52 1,21-46,35	46,37 271,5	6,24	6,45	27,59	0,1550	0,1601
09, Red R	D50	41,88 62,00 31,82	69,69 27,2	23,31	12,42	3,24	0,5982	0,3188
10, Yellow J		81,97 1,81 71,59	71,61 88,5	58,84	60,24	9,50	0,4576	0,4685
11, Green G		51,62-41,12 11,52	42,70 164,4	12,10	19,81	11,95	0,2759	0,4515
12, Blue B		29,20 -5,28-49,34	49,62 263,9	5,25	5,92	21,25	0,1621	0,1825

Table 7 shows the colorimetric data of the CIE-test colours no. 9 to 12 which show a good approximation of the four elementary hues for CIE standard illuminant D65 and probably also for the CIE illuminant D50. The CIE-test colours correspond approximately to the colours with the Munsell notations $5 R, 5 Y, 5 G$ and $5 P B$ and serve as reference for the four elementary hues Red R, Yellow J, Green G and Blue B.

Colorimetric supplement for DIN 33872-1 to -6

The spectral data of the CIE-test colours are specified in CIE 13.3. There are real samples of the BAM and other sources which approximate the spectral reflections of the CIE-test colours. Additionally there are metameric samples for D65 available, for example one set of metameric CIE-test colours has been produced with standard offset colours, in the test charts according to ISO/IEC 15775 for the test of colour copiers.

11. Equal hue triangles and 16 step colour scales

In image technology the CIELAB hue angles $h_{\mathrm{ab}, \mathrm{a}}=26,92,162$, and 272 are used for $R J G B$, to produce the elementary hues for these angles. For a real printer 10 pages with the six elementary colours $X=O Y L C V M$, and the four elementary hues $X=R J G B$ have been produced. For a printer output example the following file (350 kByte, 10 pages) may be used.
http://www.ps.bam.de/VE39/10L/L39E00NP.PDF
The CIELAB hue angles $h_{\mathrm{ab}, \mathrm{a}}$ are shown in the output for both types of hue angles: the six basic device hues $X=$ OYLCV (page 1 to 6), and the four CIE elementary hues $X=R J G B$ (page 7 to 10) which are approximately produced by the printer.

Figure 27 - 16 step colour scales in a hue triangle with the elementary hue green G
Figure 27 shows the 16 step colour series in a hue triangle with the elementary hue green of the CIELAB hue angle $h_{\mathrm{ab}, \mathrm{a}}=162$ degree. The three 16 step series black-white, white-green, and green-black shall be equally spaced in

Colorimetric supplement for DIN 33872-1 to -6

the output. This is for many devices often not the case. ISO/IEC TR 19797 describes a linearisation method which reaches this aim in the output.
A hue triangle includes the colour attributes relative whiteness \boldsymbol{w}^{*}, relative chroma \boldsymbol{c}^{*}, and relative blackness \boldsymbol{n}^{*} which are all three in the range between 0 and 1. According to Ostwald (1930) there is the colorimetric relation
relative whiteness + relative blackness + relative chroma $=1$
or

$$
w^{*}+n^{*}+c^{*}=1
$$

In a hue triangle two of the three colour attributes are sufficient to describe the location in the triangle.The Swedish Natural Colour System NCS (1982) has choosen in a hue triangle as primary attribute the elementary hue text \boldsymbol{u}^{*} and additionally the relative blackness \boldsymbol{n}^{*} and the relative chroma \boldsymbol{c}^{*}. One can compare these colour attributes with the specifications of the Munsell colour system: hue, chroma, and lightness (Value). The definitions of the triangle lightness \boldsymbol{t}^{*} and the relative blackness \boldsymbol{n}^{*} in figure 27 is different compared to the definition of the CIE lightness L^{*}, and CIE chroma C* ${ }_{a b}$, see Richter (2006a).
The 16 step colour series in a hue triangle requires at first the CIELAB data of the six chromatic device colours OYLCVM, and the two achromatic device colours NM. The output of the elementary colours require the hue angles $26,92,162$, and 272 degree of the four elementary colours RJGB in CIELAB. Figure 27 includes these data as table (top right). For the production of elementary green G the three rgb input data 0,1 , and 0 are interpreted as elementary rgb* input data. For the output of the elementary colour green G the device related data olv $\mathrm{Ma}=0,1$, and 0.37 are calculated, see data in figure 27.

Figure 28-16 step equally spaced colour series for the elementary hue blue B on a standard monitor TLSOO
Figure 28 shows the hue triangle with 16 step equally spaced colour series of the elementary hue blue B for the standard monitor TLSOO. For the standard monitor TLSOO the $\boldsymbol{r g b} \boldsymbol{b}^{*}$ coordinates $(0,0,1)$ are transferred to the $\mathbf{o l v} \boldsymbol{v}^{*}$ coordinates ($0,0,61,1$) with an appropriate PostScript program code in the PS and PDF file .
Figure 28 includes the standard colour hexagon with the regular 60 degree hue hexagon. Additionally the standard monitor colours are shown in comparison to this regular hue hexagon. The device colour violet blue V has the hue angle 306 degree. This is a large hue difference compared to 272 degree of elementary blue B.
For the production of a equally spaced output of the elementary hue blue B on the monitor, for example the linearisation method according to ISO/IEC TR 19797 is used. An improved method has been developed by Witt (2006). This method works with a colour table, for example of $9 \times 9 \times 9$ rgb input colours, and the produced $L^{*} a^{*} b^{*}$ output device colours. With this method 16 step equally spaced colour series can be produced in any hue triangle, for example for the hue angles of the six device colours OYLCVM, and the hue angles of the four elementary colours RJGB, and additionally for any other hue angle.
In the application of this paper the measured device table rgb - L*a* ${ }^{*}$ is included in the PostScript code of the test file which linearizes the output of this file or any PS or PDF file, compare ISO/IEC TR 19797. With this PostScript code the rgb input data of any PS or PDF file may be interpreted as either device colour data ($\mathrm{rgb} \rightarrow \mathrm{ol} \mathrm{v}^{*}$) or as elementary colour data (rgb $\rightarrow \mathrm{rgb}^{*}$). In a first step both interpretations and output methods are realized and described for PostScript vector code, see Richter (2006b).

Colorimetric supplement for DIN 33872-1 to -6

12. User coordinates and colour workflow

The standard DIN 33872 includes the output of digital test files on many output devices, for examples on monitors and printers for different viewing situations. In any hue plane the output colours can be described in a good approximation by a hue triangle in the CIELAB colour space with the coordinates adapted chroma C^{*} ab,a , and lightness L^{*}. The following figures show complementary hue planes and usual transfers between two devices in real applications.

Figure 29-16 step colour series of hue planes $O-C$ of the two systems TLS00-ORS18 and TLS18-ORS18 Figure 29 shows 16 step (part 1 and 2) and 5 step (part 3 and 4) colour series for the complementary hue planes $O-C$ of the systems TLS00 - ORS18 (left) and TLS18 - ORS18 (right). The data ΔE^{*} describe the CIELAB-colour differences of 16 and 5 steps between neighboring colours.
With the transformation method of DIN 33872 the 16 step colour series are transferred by an affine transformation. This transformation is well defined between any two hue triangles. This kind of reproduction remains the most important colour attribute hue constant.However, for example for the cyan hue a darker colour series is produced on the printer (black balls) compared to the monitor (yellow balls), compare figure 29 part 2 and part 4.
In figure 29 (part 3 and 4) the transformations are shown by green lines for the 5 step series. In a first view the transfers seem to be complex. But the transfer structure and the colorimetric realisation is simple and well defined.
In ISO 9241-306 the affine transfer is also applied to different reflections of both the office lighting on the monitor surface and the data projector display. If for example in an extreme case the luminance of the data projector on the display is equal to the luminance of the office lighting on the display area, then the luminance contrast between white and black is $2: 1$. Then the lightness L^{*} of the gray scale is limited to the lightness range $L^{*}=70$ to 95 , compare for example the lightness range $L^{*}=0$ to 95 or $L^{*}=18$ to 95 in figure 29 (left and right). A small grey range of 25 CIELAB steps allows still the discrimination of 16 visual grey steps, if the relative luminances are spaced appropriately. In this case this is reached by an approximately linear relative luminance of the grey steps, see the example file of ISO 9241-306 (16 pages, 1,7 Mbyte)
http://www.ps.bam.de/ME15/10L/L15E00FP.PDF

In this case it shall be valid: gamma=1 and not gamma=2.2 which is defined in the sRGB colour space of IEC 61966-2-1 for a high luminance contrast range. This high luminance contrast range. is larger 255:1, which can only be realized with a monitor in a dark room with no room light reflections on the monitor surface. At real work places the luminance contrast range may be between 20:1 and 40:1 for both monitors and printers. Therefore the colour space sRGB of IEC 61966-2-1 seems not appropriate for this office case.

Figure 30 - Complementary hue triangles $O-C$ for TLSOO and ORS18, and colour management Figure 30 shows complementary hue triangles for the standard television luminous system TLS18 (yellow balls), and the standard offset reflective system ORS18a (black balls). The transformations differ considerably compared to the affine transformation in figure 29. Only the affine transformation remains the hue, the colour discrimination and the equal relative spacing on the different device systems.
Figure 30 part 1 and 3 includes a cutting ("clipping") of monitor colours and transfer on the surface of the printer colour space. Figure 30 part 2 and 4 includes a colour shift also within the colour space similar compared to the affine transformation in figure 29. The affine transformation in figures 29 and 30 define the affine colour management method.
According to ISO 15076-1 there is a "standard" method for "colour management" which includes the above standard case monitor - printer. In application the relative output according to ISO 15076-1 produces for this standard case very different outputs on a printer. According to ISO 15076-1 the many different transfers of figure 30 are possible and additionally many different gamma transformations of the steps are allowed. The different color management modules (CMMs) and computer operating systems use many allowed and different transfers according to ISO 15076-1. By clipping of the output differences of 30 CIELAB may appear on the same device. This difference is large compared to the output tolerance of 3 CIELAB for colour copiers according to ISO/IEC 15775.
With the different CMMs, for example of the companies Apple, Adobe, Windows, Heidelberg and others, different results are produced according to figure 30 . Only by the application of the affine transformation of figure 29 the results are expected on the same device within the visual and colorimetric tolerance of 3 CIELAB.

Colorimetric supplement for DIN 33872-1 to -6

13. Colorimetric output specification for the illuminants D50 and D65

Colour measurement is the basis for the colorimetric output specification, for example defined for the 5 and 16 step colour series in DIN 33866-1 Annex G, or in ISO/IEC 15775 Annex G. The test files according to DIN 33872-6 include additionally 9 step series, for example for the hue planes $O-C, Y-V$, and $L-M$ which include central grey Z. The colorimetric output specification is based on the output of the test file of figure 8 in DIN 33872-1 with 24 colour series in the rows A to X each of 17 colour steps. For the corresponding rgb test file see (3 pages, 120 kByte) http://www.ps.bam.de/De11/10L/L11e00NP.PDF

Figure 31 - Colorimetric output specification of the colour series orange red - white for D50 and D65
Figure 31 shows the colorimetric output specification for rgb input data. The example shows the 17 step colour series orange red - white of the row A for the device system X. The standard specification is given for the CIE illuminant D50 (left) and the CIE standard illuminant D65 (right).
The basis for any colorimetric specification requires the output of an rgb test file, see for example (3 pages, 120 kByte)
http://www.ps.bam.de/De11/10L/L11e00NP.PDF
or/and the output of a cmy test file, see for example (3 pages, 120 kByte)
http://www.ps.bam.de/De21/10L/L21e00NP.PDF
The measured $L^{*} a^{*} b^{*}$ CIELAB data may be included in three special $P S$ files which can be downloaded from the following three internet addresses. If the measured $L^{*} a^{*} b^{*}$ CIELAB data are included in a $P S$ file. Then a $P D F$ file is produced from the $P S$ file with a $P S$ interpreter. All necessary calculations are included in the $P S$ program code.
For the colorimetric specification with rgb colour data of two device systems F and X for D65 the measured data tables rgb - $L^{*} a^{*} b^{*}$ are included at the beginning of the following $P S$ file, see ($P S$ code, 220 kByte)
http://www.ps.bam.de/De1710L/L17e00NP.PS
For the colorimetric specification with rgb colour data of two device systems F and X for $D 65$ the following $P D F$ file is produced from the PS file with the PS interpreter Adobe Acrobat Distiller 3.0, see (24 pages, 700 kByte)
http://www.ps.bam.de/De17/10L/L17e00NP.PDF

Similar, for the colorimetric specification with rgb and cmy0 colour data of the device system X for D65 the following $P S$ file is used and transferred to the PDF file, see (220 kByte of $P S$ code and 24 pages, 700 kByte of $P D F$ file) http://www.ps.bam.de/De18/10L/L18e00NP.PS
http://www.ps.bam.de/De18/10L/L18e00NP.PDF

Similar, for the colorimetric specification with cmy0 colour data of the device system X for D50 and D65 the following $P S$ file is used and transferred to the PDF file, see (220 kByte of $P S$ code and 24 pages, 700 kByte of $P D F$ file) http://www.ps.bam.de/De19/10L/L19e00NP.PS
http://www.ps.bam.de/De19/10L/L19e00NP.PDF

14. References

14.1 Standard and similar documents

CIE13.3:1995: Colour rendering - Method of measuring and specifying colour rendering of light source
CIE15:2004: Colorimetry, 3rd edition
CIE 17.4:1987: International lighting vocabulary, 4th edition (Joint publication IEC/CIE)
CIE 142:2001, Improvement to industrial colour difference evaluation
CIE160:2004, A review of chromatic adaptation transforms
CIE163:2004,: The effects of fluorescence in the characterization of imaging media
CIE 170-1:2006: Fundamental chromaticity diagram with physiological axes - Part 1
DIN 5033-1:1979, Farbmessung - Grundbegriffe der Farbmetrik
DIN 5033-3:1992, Farbmessung - Farbmaßzahlen
DIN 5033-4:1992, Farbmessung - Spektralverfahren
DIN 5033-7:1983, Farbmessung - Meßbedingungen für Körperfarben
DIN 5035-2:1990, Beleuchtung mit künstlichem Licht - Richtwerte für Arbeitsstätten in Innenräumen und im Freien
DIN 6164:1980, DIN-Farbenkarte - System der DIN-Farbenkarte für den 20-Normalbeobachter
DIN 6160:1996, Anomaloskope zur Diagnose von Rot-Grün-Farbenfehlsichtigkeit nach Nagel
DIN 6169-1:1976, Farbwiedergabe - Allgemeine Begriffe
DIN 6174:1979, Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der CIELAB-Formel oder
DIN 6174, Norm-Entwurf, 2006, Farbmetrische Bestimmung von Farbmaßzahlen und Farbabständen im angenähert gleichförmigen CIELAB-Farbenraum
DIN EN IEC 61966-2-1: 2005, Multimedia-Systeme und Geräte - Farbmessung und Farbmanagement - part 2.1: Farbmanagement, RGB-Vorgabe-Farbraum - sRGB
DIN EN IEC 61966-7-1: 2006, Multimedia-Systeme und Geräte - Farbmessung und Farbmanagement - part 7.1: RGB-Farbdrucker
RAL DESIGN Atlas - Color charts with 1688 colour samples $1,7 \mathrm{~cm} \times 1,8 \mathrm{~cm}$, silky glossy
NOTE: The RAL DESIGN Atlas includes colour samples for 36 CIELAB hue angle differences of 10 degree, and for CIELAB chroma and lightness differences $\Delta C^{*}{ }_{a b}=10$ and $\Delta L^{*}=10$ for the CIE standard illuminant D65 and the
CIE 10-degree-observer.
ISO 2846-1:1997, Graphic technology - Colour and transparency of ink sets for four-colour-printing - Part 1:
Sheetfed and heat-set web offset lithographic printing.
ISO 15076-1:2005, Image technology colour management - Architecture, profile format, and data structure - Part 1: Based on ICC.1:2004-10.
ISO/IEC 15775:1999, Information technology - Office machines - Method of specifying image reproduction of colour copying machines by analog test charts - Realisation and application and ISO/IEC 15775:1999/Amd 1:2005.
ISO/IEC TR 19797:2004, Information technology - Office machines - Device output of 16 colour scales, output linearization method (LM) and specification of the reproduction properties. For information and test charts according to ISO/IEC TR 19797 see
http://www.ps.bam.de/19797TE
ISO/IEC TR 24705:2005, Information technology - Office machines - Machines for colour image reproduction Method of specifying image reproduction of colour devices by digital and analog test charts. For information and test charts according to ISO/IEC TR 24705 see
http://www.ps.bam.de/24705TE
ISO 22028-1:2004, Photography and graphic technology - Extended colour encodings for digital image storage, manipulation and interchange - Part 1: Architecture and requirements.
ISO/TS 22028-2:2005, Photography and graphic technology - Extended colour encodings for digital image storage, manipulation and interchange - Part 2: Reference output medium metric RGB colour image encoding (ROMM RGB) ITU R BT 709-3:1998 Parameter values for the HDTV standards for production and international program exchange Swedish Standard SS 0191 00:1982, Colour notation system - SS 0191 01:1982, CIE tristimulus values and trichromatic coordinates for some 16000 colour notations according to SS 019100 - SS 0191 02:1982, Colour atlas - SS 0191 02:1982, CIE tristimulus values and chromaticity coordinates for the colour samples in SS 019102.

PostScript Refererence Manual, Adobe Systems, 1989

Author publications

Fairchild, Mark (2005), Color Appearance Models, Second edition, John Wiley \& Sons, 385 pages
Fechner, G.T. (1860), Elemente der Psychophysik, Breitkopf und Haertel, Leipzig
Hard, A. and Lars Sivik (1981), NCS - Natural Color System: A Swedish standard for color notation, Color Research and Application, no. 3, see also
http://www.ncscolour.com
Hurvich, L.M. (1981), Colour vision, Sinauer Associates Inc. Massach., ISBN 0-87893-337-9, 328 pages.
Holtsmark, T. and Valberg, A. (1969), Colour discrimination and hue, Nature, Volume 224, October 25, p. 366-367
Jaeger, S. (2005), Multispectral CIELAB camera for the evaluation of colored automobile coatings, see (18 pages, 2 MByte)
http://www.ps.bam.de/JAE05.PDF
Jaeger, S. (2006), Bildgebendes Multispektralsystem zur Serienfarbmessung an goniochromatischen
Oberflächenbeschichtungen in der Automobil- und Zulieferindustrie, Dissertation, TU Berlin, Fakultät IV,
Elektrotechnik und Informatik, see the URL (142 pages, 8 MByte, PDF format)
http://opus.kobv.de/tuberlin/volltexte/2006/1405/
MacAdam, D.L. (1978), Colorimetric data for samples of OSA uniform colour scales, J. Opt. Soc. Amer. 68, no. 1, p. 121-130.
Miescher, K. (1948), Neuermittlung der Urfarben und deren Bedeutung für die Farbordnung, Helv. Physiol. Acta 6, C12-C13.

NOTE: The elementary hues are often called unique hues. They are in hue identical with the elementary colours
of DIN 33872. The elementary colours of the Natural Colour System NCS also have the elementary hues.
Ostwald, W, (1923), Physikalische Farbenlehre, Leipzig, Unesma.
Ostwald, W, (1930), Die Farbenfibel, Leipzig, Unesma.
Richter, K. (1969), Antagonistische Signale beim Farbensehen und ihr Zusammenhang mit der empfindungsgemäßen Farbordnung, Dissertation, Universität Basel.
Richter, K. (1979), BAM-Forschungsbericht no. 61, Beschreibung von Problemen der höheren Farbmetrik mit Hilfe des Gegenfarbensystems, 99 pages, ISSN 0172-7613
Richter, K. (1980), Cube root colour spaces and chromatic adaptation, Color Research and Application 5, no. 1, pages 25-43
Richter, K. (1985), BAM-Forschungsbericht no. 115, Farbempfindungsmerkmal Elementarbuntton und Buntheitsabstände als Funktion von Farbart und Leuchtdichte von In- und Umfeld, 118 pages, ISBN 3-88314-420-7
Richter, K. (1996), Computergrafik und Farbmetrik - Farbsysteme, PostScript und geräteunabhängige CIE-Farben, VDE-Verlag, 288 pages with about 500 colour figures and many additional references, see
http://www.ps.bam.de/buche
Valberg, A. (2005), Light - Vision - Color, John Wiley \& Sohn, 462 pages.
Richter, K. (2005a), Relative Colour Image Technology (RCIT) and RLAB lab* (2005) Colour Image Encoding, see (70 pages, 850 kByte)
http://www.ps.bam.de/RLABE05.PDF
Richter, K. (2005b), Linear relationship between CIELAB and device coordinates for Colorimetric Image Technology (CIT), see (6 pages, 140 kByte)
http://www.ps.bam.de/CIE05.PDF
Richter,K. (2006a), Symmetrisches Farbsehmodell LMSLAB für Elementarfarben und Farbumstimmung, see the URL (31 pages, 1,5 MByte)
http://www.ps.bam.de/VISG06.PDF
Richter, K. (2006b). Device dependent linear relative CIELAB data lab* and colorimetric data for corresponding colour input and output on monitors and printers, CIEx030: 2006, Proceedings of the ISCC/CIE Expert Symposium '06, Ottawa/Canada, 151-156.
Richter, K. (2006c), Relation of Weber law and Stevens law at achromatic threshold, see the URL (11 pages, 200 kByte)
http://www.ps.bam.de/BAMAT.PDF
Richter, K. (2007). Colorimetric model of logarithmic colour spaces LMSLAB, Part II, The Proceedings of the 26th

Colorimetric supplement for DIN 33872-1 to -6

Session of the CIE, 2007, Beijing, Proceedings Volume 2.pdf, 199-230
Stevens, S. S. (1961), To honor Fechner and repeal his law, Science 133, 80-88
Stevens, S. S. (1975), Phychophysics, Introduction to its perceptual, neural, and social prospects, Wiley, ISBN 0-471-82437-2, 329 pages
Valberg, A. (2005), Light, Vision, Color, Wiley, ISBN 047084903 7, 462 pages
Wagenknecht, H. (2005), Colour Management Method (CMM) which maintains CIELAB hue and relative lightness and chroma for analog and digital ISO/IEC-test charts, see (15 pages, 18 MByte)
http://www.ps.bam.de/WAG05.PDF
Wagenknecht, H. (2006), Kontrolle von Bilddaten vom Scan bis zum Druck - Farbmanagement in einem relativen CIELAB-Farbraum (25 pages, 5 MByte)
http://www.ps.bam.de/WAG06.PDF
Witt, J. (2006), Farbmetrische Methoden zur Herstellung von Prüfvorlagen für Farbkopierer, Farbscanner und Farbmonitore, Dissertation, TU Berlin, Fakultät IV, Elektrotechnik und Informatik, 177 pages, see the URL (178 pages, 8 MByte, PDF format)
http://opus.kobv.de/tuberlin/volltexte/2006/1363/
Witt, J. (2005), Production method for analog ISO/IEC-test charts according to ISO/IEC 15775, (13 pages, 3 MByte) http://www.ps.bam.de/WIT05.PDF
Witt, J. (2006), Verfahren zur Reproduktion von im CIELAB-Farbraum definierten Farben, (33 pages, 3,2 MByte) http://www.ps.bam.de/WIT06.PDF

NOTE 1: For the test charts of DIN 33872-2 to -6 in PS and PDF format, and with rgb and cmy0 input data see the following URL:
http://www.ps.bam.de/33872E
NOTE 2: The images of this paper and others in DIN and ISO/IEC standard documents of the editor Klaus Richter often have on the right side under the figure a number, for example "YG731-8", compare the following figure:

In this case the figure and similar figures may be found under the URL which is build by the BAM server address "www.ps.bam.de", and the first four alphanumeric letters "YE73". The similar figures of the relative affine image reproduction may be found in this case under the URL:
http://www.ps.bam.de/YE73
On this BAM page there is usually a link which allows to download the page "YG73", and the figure "YG730-8N" in the formats Adobe PostScript (PS) or Portable Document (PDF, Version 1.3).
A survey of many figure rows which are created during the same time period may be found under the URL which is build by the BAM server address "www.ps.bam.de", and the first two alphanumeric letters "YE".
The similar figures may be found in this case under the URL:
http://www.ps.bam.de/YE.HTM
Additional image rows may be found under the addresses which begin instead of " Y " with any letter between "A to Z" and end instead of "E" for English with the letter "G" for German, for example "ZE":
http://www.ps.bam.de/ZE.HTM

