Line-element examples for grey samples $(0,2 \leq x \leq 5)$

$\boldsymbol{F}_{\mathbf{u}}(\boldsymbol{x})$ is called the line-element function of $f_{\mathbf{u}}(\boldsymbol{x})$. Both functions are normalized to the surround value:

$$
\begin{align*}
& \frac{d\left[F_{\mathbf{u}}(x)\right]}{d x}=f_{\mathbf{u}}(x) \tag{1}\\
& F_{\mathbf{u}}(x)=\int \frac{f_{\mathbf{u}}^{\prime}(x)}{f_{\mathbf{u}}(x)} d x=\int \frac{\mathbf{b}}{1+\mathrm{b} x} d x \tag{2}
\end{align*}
$$

Example for $L^{*}(x) \& \Delta Y$ with $x=Y / Y_{\mathrm{u}}, x_{\mathrm{u}}=1, \mathrm{~b}=6,141$:

$$
\begin{align*}
& L_{\mathbf{u}}^{*}(x)=\frac{L^{*}(x)}{L^{*}\left(x_{\mathbf{u}}\right)}=\frac{\ln (1+\mathrm{b} x)}{\ln (1+\mathrm{b})} \tag{3}\\
& f_{\mathbf{u}}(x)=\frac{\Delta Y}{\Delta Y_{\mathbf{u}}}=\frac{1+\mathrm{b} x}{1+\mathrm{b}} \tag{4}
\end{align*}
$$

