Line-element examples for grey samples $\left(0,2 \leq Y_{r} \leq 5\right)$

$\boldsymbol{F}_{\mathbf{u}}\left(\boldsymbol{Y}_{\mathbf{r}}\right)$ is called the line-element function of $f_{\mathbf{u}}\left(\boldsymbol{Y}_{\mathbf{r}}\right)$. Both functions are normalized to the surround value:

$$
\begin{gather*}
\frac{d\left[F_{\mathrm{u}}\left(Y_{\mathrm{r}}\right)\right]}{d Y_{\mathrm{r}}}=f_{\mathrm{u}}\left(Y_{\mathrm{r}}\right) \tag{1}\\
F_{\mathrm{u}}\left(Y_{\mathrm{r}}\right)=\int \frac{f_{\mathrm{u}}^{\prime}\left(Y_{\mathrm{r}}\right)}{f_{\mathrm{u}}\left(Y_{\mathrm{r}}\right)} d Y_{\mathrm{r}} \tag{2}
\end{gather*}
$$

Example for the normalized functions with $\boldsymbol{Y}_{\mathbf{r}}=\mathbf{1}$:

$$
\begin{align*}
& F_{\mathrm{u}}\left(Y_{\mathrm{r}}\right)=\frac{F\left(Y_{\mathrm{r}}\right)}{F(I)}=\frac{\ln \left(1+\mathrm{b} Y_{\mathrm{r}}\right)}{\ln (1+\mathrm{b})} \tag{3}\\
& f_{\mathrm{u}}\left(Y_{\mathrm{r}}\right)=\frac{f\left(Y_{\mathrm{r}}\right)}{f(I)}=\frac{1+\mathrm{b} Y_{\mathrm{r}}}{1+\mathrm{b}} \tag{4}
\end{align*}
$$

