
Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours and two ranges $0.2 \le L_r \le 1$ and $1 \le L_r \le 5$					
The Weber-Fechner law describes the lightness L^*_{TIBIAR} as logarithmic function of L_r . The Stevens law describes the lightness L^*_{TIBIAR} as potential function of L_r =Y/5.					
IEC 61966-2-1 uses a similar potential function $L_{TC}^* = m L_r^{-1/2,4}$.					
The Weber-Fechner law is equivalent to the linear equation: $\Delta L_r = c_i L_r$ (i=0,1) [1]					
Integration leads to the logarithmic equation: $L_r^*=k_i \log(L_r)$ (i=0,1) [2]					
Derivation leads for ΔL^*_r =1 to the linear equation: $L_r/\Delta L_r$ = k_i (k_0 =46, k_1 =63) [3]					
For colours in offices the standard contrast range is 25:1=90:3,6.					
Table 1: CIE tristimulus value Y, luminance L, and lightnesses L*					
Colour (matte)	Tritimulus value	office luminance	relative luminance	CIE lightness	relative lightness
(contrast) (25:1=90:3,6)	Y	L [cd/m ²]	L _r =L/L _u	L^*_{CIELAB} ~ $m L_r^{1/2,4}$	L_r^* = $k \log(L_r)$
White W (paper)	90 =18*5	142 =28,2*5	5	94 =50+44	$44 = k_1 \log(5)$
Grey Z (paper)	18	28,2	1	50	$0 = k_0 \log(1)$
Black N	3,6	5,6	0,2	18	-32
(paper)	=18/5	28,2/5		50-32	$=k_0\log(0,2)$
For the two lightness ranges it is $k_0=-32/\log(0.2)=46$ and $k_1=44/\log(5)=63$.					
EE540-2N					