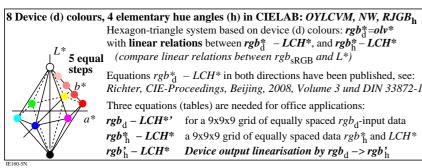
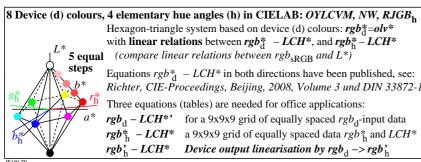
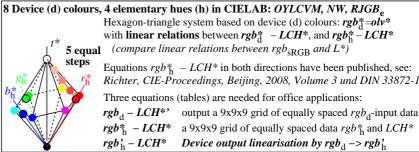
http://130.149.60.45/~farbmetrik/IE16/IE16L0NA.PS/.TXT; start output

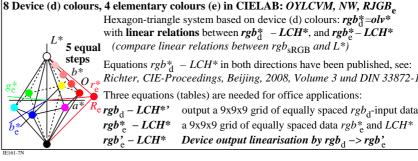
N: No Output Linearization (OL) data in File (F), Startup (S) or Device (D)


8 Device (d) colours in CIELAB: OYLCVM and NW Hexagon-triangle system based on device (d) colours: $rgb_{\downarrow}^* = olv^*$ with linear relations between rgb_d^* and LCH^* **5 equal** (compare linear relations between rgb_{sRGB} and L^*) Equations $rgb_d^* - LCH^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $rgb_d - LCH^*$ ' for a 9x9x9 grid of equally spaced rgb_d -input data


8 Device (d) colours in CIELAB: OYLCVM and NW Hexagon-triangle system based on device (d) colours: $rgb_d^* = olv^*$ with **linear relations** between rgb_{A}^{*} and LCH^{*} **5 equal** (compare linear relations between rgb_{sRGB} and L^*) Equations $rgb_d^* - LCH^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $rgb_d - LCH^*$, for a 9x9x9 grid of equally spaced rgb_d -input data $rgb_d^* - LCH^*$ a 9x9x9 grid of equally spaced data rgb_d^* and LCH^* $rgb'_d - LCH^*$ Device output linearisation by $rgb_d -> rgb'_d$

 $rgb_d^* - LCH^*$ a 9x9x9 grid of equally spaced data rgb_d^* and LCH^*


 $rgb'_{A} - LCH^*$ Device output linearisation by $rgb_{A} -> rgb'_{A}$


See original or copy: http://web.me.com/klaus.richter/IE16/IE16L0NA.PS /.TXT Technical information: http://www.ps.bam.de or http://130.149.60.45/~farbmetrik

8 Device (d) colours in CIELAB: OYLCVM and NW Hexagon-triangle system based on device (d) colours: $rgb_{A}^{*}=olv^{*}$ with **linear relations** between rgb_d^* and LCH^* **5 equal** (compare linear relations between rgb_{sRGB} and L^*) Equations $rgb_d^* - LCH^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $rgb_d - LCH^*$ output a 9x9x9 grid of equally spaced rgb_d -input data $rgb_d^* - LCH^*$ a 9x9x9 grid of equally spaced data rgb_d^* and LCH^* $rgb'_A - LCH^*$ Device output linearisation by $rgb_A -> rgb'_A$ 8 Device (d) colours in CIELAB: OYLCVM and NW Hexagon-triangle system based on device (d) colours: $cym_d^*=1-rgb_d^*=1-lov$ with **linear relations** between *cmy*^{*} and *LCH** **5 equal** (compare linear relations between rgb_{sRGB} and L^*) steps Equations $rgb_d^* - LCH^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: cmy_d - LCH*' output a 9x9x9 grid of equally spaced cmy_d-input data cmy*_d - LCH* a 9x9x9 grid of equally spaced data cmy*_d and LCH* cmy'_d - LCH* Device output linearisation by cmy_d -> cmy'_d

TUB-test chart IE16; 6 device and 4 elementary colours Relation between CIELAB data and colour data rgb and cmy input: *olv* setrgbcolor* output: no change compared to input