http://130.149.60.45/~farbmetrik/KE28/KE28L0N1.TXT / PS: start output

N: No Output Linearization (OL) data in File (F), Startup (S) or Device (D) 8 Device (d) colours reb\$=olv* in CIFLAB: OYLCVM and NW

Hexagon-triangle system based on device (d) colours: reb*=olv* with linear relations between rgb* and LCH* equal (compare linear relations between rgb. DCD and L*) Equations $rgb_A^* - LCH^*$ in both directions have been published, see: Richter CIF-Proceedings Beijing 2008 Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $rgb_A - LCH^*$, for a 9x9x9 grid of equally spaced rgb_A -input data rgb*, - LCH* a 9x9x9 grid of equally spaced data rgb*, and LCH*

Technical

information:

original

or copy:

http://web.me.com/klaus.richter

ttp://web.me.com/klaus.richter/KE28/KE28L0N1.TXT/.PShttp://www.ps.bam.de or http://130.149.60.45/-farbmetrik

8 Device (d) colours reb*=olv* in CIFLAB: OYLCVM and NW Hexagon-triangle system based on device (d) colours: reb*=olv* with linear relations between reb* and LCH* equal (compare linear relations between rgb open and L*) Equations reb_{*}^{*} – LCH_{*}^{*} in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: rgb_a - LCH*' for a 9x9x9 grid of equally spaced rgb_a-input data $rgb_A^* - LCH^*$ a 9x9x9 grid of equally spaced data rgb_A^* and LCH^* rgb'*, - LCH* Device output linearisation by rgb, -> rgb'*,

rgb'*, - LCH* Device output linearisation by rgb, -> rgb'*,

6 Elementary (e) colours rgb₄*=rgb* in CIELAB: RJGB and NW Hexagon-triangle system based on device (d) colours: rgb*=olv* with linear relations between reb* - LCH*, and reb* - LCH* equal (compare linear relations between rgb and L*) Equations $reb_s^* - LCH_s^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: rgb_a - LCH*' for a 9x9x9 grid of equally spaced rgb_a-input data rgb%, - LCH* a 9x9x9 grid of equally spaced data rgb%, and LCH*

6 Elementary (e) colours rgb*=rgb* in CIELAB: RJGB and NW Hexagon-triangle system based on device (d) colours: rgb*=olv* with linear relations between $rgb_A^* - LCH^*$, and $rgb_b^* - LCH^*$ equal (compare linear relations between rebance and L*) Equations $reb_s^* - LCH_s^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications:

 $rgb_A - LCH^*$ for a 9x9x9 grid of equally spaced rgb_A -input data rgb* - LCH* a 9x9x9 grid of equally spaced data rgb* and LCH* rgb'* - LCH* Device output linearisation by rgb -> rgb'*

reb'\\ - LCH* Device output linearisation by reb_i -> reb'\\.

8 Device (d) colours rgb3=olv* in CIELAB: OYLCVM and NW

Hexagon-triangle system based on device (d) colours: rgb*=olv* with linear relations between rgb* and LCH* equal (compare linear relations between rgb. DCD and L*) Equations $rgb_A^* - LCH^*$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $rgb_A - LCH^*$ output a 9x9x9 grid of equally spaced rgb_A -input data reb*, - LCH* a 9x9x9 grid of equally spaced data reb*, and LCH* rgb'*, - LCH* Device output linearisation by rgb, -> rgb'*,

8 Device (d) colours rgb₄*=olv* in CIELAB: OYLCVM and NW Hexagon-triangle system based on device (d) colours: cvm3=1-reb3 cmy* - LCH* a 9x9x9 grid of equally spaced data cmy* and LCH* cmy'*, - LCH* Device output linearisation by cmy, -> cmy'*,

with linear relations between cmv3 and LCH* 5 equal (compare linear relations between rgb account L*) Equations reb* - LCH* in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: cmy_A - LCH*' output a 9x9x9 grid of equally spaced cmy_A-input data

6 Elementary (e) colours rgb₄=rgb* in CIELAB: RJGB and NW Hexagon-triangle system based on device (d) colours: rgb*=olv* with linear relations between reb* - LCH*, and reb* - LCH* 5 equal (compare linear relations between rgb or GR and L*) Equations rgb* - LCH* in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: rgb., - LCH*' output a 9x9x9 grid of equally spaced rgb.,-input data

rgb'\\. - LCH* Device output linearisation by rgb_1 -> rgb'\\ 6 Elementary (e) colours reb*=reb* in CIELAB; RJGB and NW Hexagon-triangle system based on device (d) colours: rgb*=olv* with linear relations between rgb* - LCH*, and rgb* - LCH* equal (compare linear relations between rebanco and L*) Equations reb*. - LCH* in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $rgb_A - LCH^*$, output a 9x9x9 grid of equally spaced rgb_A -input data

rgb* - LCH* a 9x9x9 grid of equally spaced data rgb* and LCH* rgb'* - LCH* Device output linearisation by rgb -> rgb'*

rgb% - LCH* a 9x9x9 grid of equally spaced data rgb% and LCH*

TUB-test chart KE28; 6 device and 4 elementary colours Relation between CIELAB data and colour data rgb and rgb* input: olv* setrebcolor output: no change compared to input