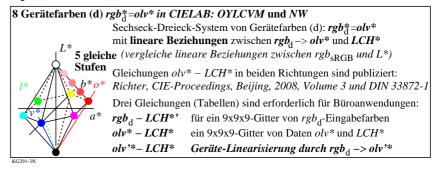
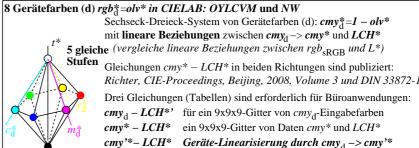
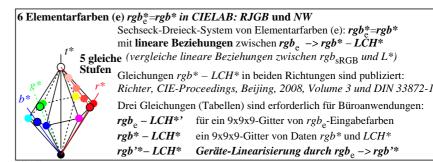
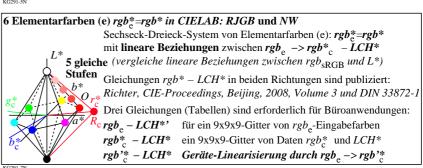

TUB-Material: Code=rha4ta


http://130.149.60.45/~farbmetrik/KG29/KG29L0NP.PDF/.PS; Start-Ausgabe N: Keine Ausgabe-Linearisierung (OL) in Datei (F), Startup (S), Gerät (D)


8 Gerätefarben (d) rgb*=olv* in CIELAB: OYLCVM und NW Sechseck-Dreieck-System von Gerätefarben (d): $rgb_d^* = olv^*$ mit lineare Beziehungen zwischen $rgb_d \rightarrow olv^*$ und LCH^* **5 gleiche** (vergleiche lineare Beziehungen zwischen rgb_{sRGB} und L^*) Gleichungen olv* – LCH* in beiden Richtungen sind publiziert: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Drei Gleichungen (Tabellen) sind erforderlich für Büroanwendungen: für ein 9x9x9-Gitter von rgb_d -Eingabefarben olv* - LCH*ein 9x9x9-Gitter von Daten *olv** und *LCH** olv'*-LCH* Geräte-Linearisierung durch rgb_d -> olv'*


8 Gerätefarben (d) rgb*=olv* in CIELAB: OYLCVM und NW Sechseck-Dreieck-System von Gerätefarben (d): $rgb_d^* = olv^*$ mit lineare Beziehungen zwischen $rgb_d \rightarrow olv^*$ und LCH^* **5 gleiche** (vergleiche lineare Beziehungen zwischen rgb_{sRGB} und L*) Gleichungen olv* – LCH* in beiden Richtungen sind publiziert: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Drei Gleichungen (Tabellen) sind erforderlich für Büroanwendungen: $rgb_d - LCH^*$ ' für ein 9x9x9-Gitter von rgb_d -Eingabefarben ein 9x9x9-Gitter von Daten *olv** und *LCH** olv* - LCH*olv'*-LCH* Geräte-Linearisierung durch rgb_d -> olv'*


Siehe Original/Kopie: http://web.me.com/klaus.richter/KG29/KG29L0NP.PDF /.PS Technische Information: http://www.ps.bam.de oder http://130.149.60.45/~farbmetrik



TUB-Prüfvorlage KG29; 6 Geräte- und 4 Elementarfarben Relation zwischen CIELAB–Daten und Farbdaten rgb und rgb* output: no change compared to input

input: *olv* setrgbcolor*