Equivalent spacing for separate and adjacent colours (Yes/No decision)

Layout example: hue plane O-C, Y-V or L-M with 9 grey steps MacBookPro 17", anti Glare

$$
\begin{aligned}
& \text { White } \mathrm{W} \\
& \text { Chromatic } \mathrm{X}, \\
& \mathrm{X}^{\prime}=\mathrm{C}, \mathrm{~V}, \mathrm{M}
\end{aligned}
$$

All the stepings of the three hue planes $\mathrm{O}-\mathrm{L}, \mathrm{Y}-\mathrm{V}$ and $\mathrm{L}-\mathrm{M}$ should be equivalent for separate and adjacent colours

Is the spacing equivalent for separate and adjacent colours?

underline: Yes/No
Remark: The spacing is not equivalent if there is at least one Yes in one of the following cases; for example see Annex (X):

Is there a continuous colour change
for adjacent colours and not for separate colours? underline: Yes/No
Are there maxima and minima in the colour change
for adjacent colours and not for separate colours?
underline: $\underline{\text { Yes/No }}$
PS output of test chart 1 according to DIN 33872-6; software Mac PS Preview Part 1

LE960-3, De160-3

Regular colour spacing between colours $\mathbf{Z}-\mathbf{X}^{\prime}$ and $\mathbf{Z}-\mathbf{X}$ (Yes/No decision)

Layout example: hue plane O-C, Y-V, L-M with 9 colour steps MacBookPro 17', anti Glare

Il colour steps of the three hue planes $\mathrm{O}-\mathrm{L}, \mathrm{Y}-\mathrm{V}$ and $\mathrm{L}-\mathrm{M}$ should be regular for separate and adjacent colours without large chromatic jumps at mean grey Z

Is the colour spacing regular at mean grey \mathbf{Z} ?

underline: Yes/No
Remark: The colour spacing is not regular if there is at least one Yes in one of the following cases; for example see Annex (X):

Are there colour jumps at the mean grey colour Z towards X or X^{\prime} for adjacent colours?
underline: Yes/No
Are there colour jumps at the mean grey colour Z towards X or X^{\prime} for separate colours
underline: Yes/No
PS output of test chart 1 according to DIN 33872-6; software Mac PS Preview

Equivalent spacing for separate and adjacent colours (Yes/No decision)
Layout example: hue plane O-C, Y-V, L-M with 9 colour steps MacBookPro 17'', anti Glare

$\mathrm{X}=\mathrm{O}, \mathrm{Y}, \mathrm{L}$

There are three opposite hue planes $\mathrm{O}-\mathrm{C}, \mathrm{Y}-\mathrm{V}$, and $\mathrm{L}-\mathrm{M}$
The colour steps are
separate in the upper figure part and ajacent in the lower figure part Between N and W there are 9 grey steps. Mean grey Z is the mean step of $\mathrm{N}-\mathrm{W}$.
$\mathrm{X}^{\prime}=\mathrm{C}, \mathrm{V}, \mathrm{M}$
Black N
All the stepings of the three hue planes $\mathrm{O}-\mathrm{L}, \mathrm{Y}-\mathrm{V}$ and $\mathrm{L}-\mathrm{M}$ should be equivalent for separate and adjacent colours.
Is the spacing equivalent for separate and adjacent colours?
Remark: The spacing is not equivalent if there is at least one Yes in one of the following cases; for example see Annex (X):

Is there a continuous colour change
for adjacent colours and not for separate colours?
Are there maxima and minima in the colour change
for adjacent colours and not for separate colours?
PDF output of test chart 1 according to DIN 33872-6; software Mac PDF-Preview
Part 3

Regular colour spacing between colours $\mathbf{Z}-X^{\prime}$ and $\mathbf{Z}-\mathbf{X}$ (Yes/No decision)

Layout example: hue plane O-C, Y-V, L-M with 9 colour steps MacBookPro 17'', anti Glare

There are three opposite hue planes $\mathrm{O}-\mathrm{C}, \mathrm{Y}-\mathrm{V}$, and $\mathrm{L}-\mathrm{M}$.
The colour steps are separate in the upper figure part and ajacent ajacent in the lower figure part Between X' and X there are 9 colour steps. $X^{\prime}=\mathrm{C}, \mathrm{V}, \mathrm{M}$ Mean grey Z is the mean step of $\mathrm{X}^{\prime}-\mathrm{X}$

All colour steps of the three hue planes $\mathrm{O}-\mathrm{L}, \mathrm{Y}-\mathrm{V}$ and $\mathrm{L}-\mathrm{M}$ should be regular for separate and adjacent colours without large chromatic jumps at mean grey Z

Is the colour spacing regular at mean grey \mathbf{Z} ?
Remark: The colour spacing is not regular if there is at least one Yes in one of the following cases; for example see Annex (X):

Are there colour jumps at the mean grey colour Z towards X or X ' for adjacent colours?

Are there colour jumps at the mean grey colour Z towards X or X^{\prime} for separate colours
PDF output of test chart 1 according to DIN 33872-6; software Mac PDF-Preview
underline: Yes /No
underline: Yes/No

LE961-3, De160-3
underline: Yes/No
underline: Yes/No
underline: Yes/no

