Equations: colorimetric data transfer from $r g b_{d}$ to $n c e^{*}{ }_{d}$ data and $L C H{ }_{d}$ data

Given: $\boldsymbol{r g} b_{\mathrm{d}}$ device colour data of any colour $r g b_{\mathrm{d}}=l a b^{*} r g b_{\mathrm{d}}$ and of 48 step colour circle $j=0$ to 47

$\boldsymbol{r g} \boldsymbol{b}_{\mathrm{Md}, \mathrm{j}}$ and CIELAB data $\boldsymbol{L}^{*}{ }_{\mathrm{Md}, \mathrm{j}}, \boldsymbol{C}_{\mathrm{ab}, \mathrm{Md}, \mathrm{j}}, \boldsymbol{h}_{\mathrm{ab}, \mathrm{Md}, \mathrm{j}}=\boldsymbol{L C H}{ }_{\mathrm{Md}, \mathrm{j}}$
Aim: calculate $n c e^{*}{ }_{\mathrm{d}}$ with $\left(0<=n^{*}{ }_{\mathrm{d}}, c^{*}{ }_{\mathrm{d}}, e^{*}{ }_{\mathrm{d}}<=1\right)$ (similar to NCS data) and $\boldsymbol{L C H}{ }^{*}{ }_{\mathrm{a}, \mathrm{d}}$ data of the device colour Data of a given device (d) colour
relative chroma of the device colour relative blackness of the device colour relative triangle lightness of the device colour relative red-green chroma in 6×60 degree system s relative yellow-blue chroma in 6×60 degree system s hue angle in 6x60 degree system s hue number in 6x60 degree system s CIELAB hue angle in device system adapted CIELAB $L C H^{*}{ }_{d}$ data of maximum colour M_{d}
relative lightness of maximum colour M_{d} relative lightness of the device colour CIELAB $L C H^{*}$ data of the device colour

$$
\begin{aligned}
& c_{\mathrm{d}}^{*}=\max \left[r g b_{\mathrm{d}}\right]-\min \left[r g b_{\mathrm{d}}\right] \\
& n_{\mathrm{d}}^{*}=1-\max \left[r g b_{\mathrm{d}}\right] \\
& t^{*}{ }_{\mathrm{d}}=1-n^{*}{ }_{\mathrm{d}}-0,5 c^{*}{ }_{\mathrm{d}} \\
& a^{*}{ }_{\mathrm{rs}, \mathrm{~d}}=r_{\mathrm{d}} \cos (30)+g_{\mathrm{d}} \cos (150) \\
& b^{*}{ }_{\mathrm{rs}, \mathrm{~d}}=r_{\mathrm{d}} \sin (30)+g_{\mathrm{d}} \sin (150)+b_{\mathrm{d}} \sin (270) \\
& h_{\mathrm{ab}, \mathrm{~s}, \mathrm{~d}}=\arctan \left[b^{*} *_{\mathrm{rs}, \mathrm{~d}} / a_{\mathrm{rs}, \mathrm{~d}}\right] \\
& e^{*}=h_{\mathrm{d}, \mathrm{~s}, \mathrm{~d}} / 360
\end{aligned}\left(0<=h_{\mathrm{ab}, \mathrm{~s}, \mathrm{~d}}^{<=360)}\right)
$$

$$
h_{\mathrm{ab}, \mathrm{~d}}=\text { function }\left[h_{\mathrm{ab}, \mathrm{~s}, \mathrm{~d}}\right] \quad \text { (with table/equations) (8) }
$$

$$
L^{*} \mathrm{Md}=\text { function }\left[h_{\mathrm{ab}, \mathrm{~d}}\right] \quad \text { (with table/equations) } \quad \text { (9) }
$$

$$
C^{*}{ }_{\mathrm{ab}, \mathrm{Md}}=\text { function }\left[h_{\mathrm{ab}, \mathrm{~d}}\right] \quad \text { (with table/equations)(10) }
$$

$$
\begin{equation*}
h_{\mathrm{ab}, \mathrm{Md}}=h_{\mathrm{ab}, \mathrm{~d}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
l^{*} \mathrm{Md}=\left[L^{*} \mathrm{Md}^{-}-L^{*} \mathrm{Nd}\right] /\left[L^{*} \mathrm{Wd}-L^{*} \mathrm{Nd}\right] \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
l_{\mathrm{d}}^{*}=t^{*}{ }_{\mathrm{d}}+l^{*} \mathrm{Md} c^{*}{ }_{\mathrm{d}}+0,5 c^{*}{ }_{\mathrm{d}} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
L^{*}{ }_{\mathrm{d}}=l^{*}{ }_{\mathrm{d}}\left[L^{*} \mathrm{Wd}-L^{*} \mathrm{Nd}\right]+L^{*} \mathrm{Nd} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
C^{*} \mathrm{ab,d}=c_{\mathrm{d}}^{*} C^{*} \mathrm{ab}, \mathrm{Md} \tag{15}
\end{equation*}
$$

