Three elementary (e) coordinates $r g b^{*}$ describe 8 colours $R G B_{\mathrm{e}}, \mathrm{CMY}_{\mathrm{e}}$, and $N W$. Hexagon-triangle system based on elementary (e) colours: $\boldsymbol{r} \boldsymbol{g} \boldsymbol{b}^{*}{ }_{\mathbf{e}}$ with linear relations between $\boldsymbol{r g} \boldsymbol{b}^{*}{ }_{\mathrm{e}}-\boldsymbol{L C H} \boldsymbol{H}_{\mathrm{e}}$

(compare approximately linear relations between $r g b_{\mathrm{SRGB}}$ and L^{*}) Equations $r g b^{*}-L C H^{*}$ in both directions have been published, see: Richter, CIE-Proceedings, Beijing, 2008, Volume 3 und DIN 33872-1 Three equations (tables) are needed for office applications: $\boldsymbol{r} \boldsymbol{g} \boldsymbol{b}_{\mathbf{d}}-\boldsymbol{L C H} \boldsymbol{H}^{*}$ ', for a 9 x 9 x 9 grid of equally spaced $r g b_{\mathrm{d}}$-input data $\boldsymbol{r g} \boldsymbol{b}^{*}-\boldsymbol{L C H} \boldsymbol{H}^{*} \quad$ a 9 x 9 x 9 grid of equally spaced data $r g b^{*}$ and $L C H_{\mathrm{e}}^{*}$ $r g b^{\prime} *-L C H^{\prime} * \sim L C H *$ elementary linearization: $r \boldsymbol{g} b_{d}->r g b^{\prime} *=r g b_{\mathrm{de}}$

