Equations: colorimetric data transfer from rgb_d to nce^*_d data and LCH^*_d data Given: rgb_d device colour data of any colour $rgb_d = lab*rgb_d$ and of 48 step colour circle j=0 to 47 $rgb_{Md,j}$ and CIELAB data $L^*_{Md,j}$, $C^*_{ab,Md,j}$, $h_{ab,Md,j} = LCH^*_{Md,j}$ Aim: calculate nce^*_d with $(0 \le n^*_d, c^*_d, e^*_d \le 1)$ (similar to NCS data) and $LCH^*_{a,d}$ data of the device colour Data of a given device (d) colour

h

 C^*_{ab}

relative chroma of the device colour relative blackness of the device colour relative triangle lightness of the device colour relative red-green chroma in 6x60 degree system s relative yellow-blue chroma in 6x60 degree system s hue angle in 6x60 degree system s hue number in 6x60 degree system s CIELAB hue angle in device system adapted CIELAB *LCH**_d data of maximum colour *M*_d

relative lightness of maximum colour M_d relative lightness of the device colour CIELAB LCH^*_d data of the device colour

$$c*_{d} = max [rgb_{d}] - min [rgb_{d}]$$
(1)

$$n_{\rm d}^* = 1 - max \left[rgb_{\rm d} \right] \tag{2}$$

$$t^*{}_{\rm d} = 1 - n^*{}_{\rm d} - 0.5 \ c^*{}_{\rm d} \tag{3}$$

$$a_{rs,d}^* = r_d \cos(30) + g_d \cos(150) \tag{4}$$

$$b^*_{\rm rs,d} = r_{\rm d} \sin(30) + g_{\rm d} \sin(150) + b_{\rm d} \sin(270)$$
 (5)

$$h_{ab,s,d} = arctan[b_{rs,d} / a_{rs,d}^*] \quad (0 \le h_{ab,s,d} \le 360) \quad (6)$$

$$*_{d} = h_{ab,s,d}/360$$
 (0<= $e*_{d}$ <=1) (7)

$$ab,d =$$
function $[h_{ab,s,d}]$ (with table/equations) (8)

$$*_{Md} =$$
function $[h_{ab,d}]$ (with table/equations) (9)

$$Md$$
 = function $[h_{ab,d}]$ (with table/equations)(10)

$$h_{ab,Md} = h_{ab,d} \tag{11}$$

$$l_{Md} = [L_{Md} - L_{Nd}] / [L_{Wd} - L_{Nd}]$$
(12)

$$l^*_{d} = t^*_{d} + l^*_{Md} c^*_{d} + 0.5 c^*_{d}$$
(13)

$$L^*_{d} = l^*_{d} \left[L^*_{Wd} - L^*_{Nd} \right] + L^*_{Nd}$$
(14)

$$C_{ab,d}^* = c_d^* C_{ab,Md}^* \tag{15}$$