Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours; relations between tristimulus value, lightness and luminance

The Weber-Fechner law describes the lightness L^{\pm}_{τ} as logarithmic function of L_{τ} . The Stevens law describes the lightness $L^{\pm}_{\tau CELAR}$ as potential function of L_{τ} =Y/5. IEC 61966–2-1 uses a similar potential function $L^{\pm}_{PC} = m L^{1/2.4}$.

The Weber-Fechner law is equivalent to the equation: $\Delta L_{\tau} = c L_{\tau}$ [1] Integration leads to the logarithmic equation: $L^*_{\tau} = k \log(L_{\tau})$. [2]

Derivation leads for $\Delta L_r^*=1$ to the linear equation: $L_r/\Delta L_r=k=57$.

For Adjacent colours in offices the standard contrast range is 25:1=90:3,6.

Table 1: CIE tristimulus value Y, luminance L, and lightness L*

Colour	Tritimulus	office	relative		TUBJND
(matte)	value	luminance	luminance		lightness
(contrast)	Y	L	L _r	L* _{CIELAB}	L* _{TUBJND}
(25:1=90:3,6)		[cd/m ²]	=L/L _u	~m L _r ^{1/2,4}	=k log(L _r)
White W	90	142	5	94	40
(paper)	=18*5	=28,2*5		=50+44	=klog(5)
Grey Z (paper)	18	28,2	1	50 =50	0 =klog(1)
Black N (paper)	3,6 =18/5	5,6 28,2/5	0,2	18 =50-32	$-40 = k \log(0,2)$
For the lightness range between L^*_r =-40 and 40 the constant is: k=40/log(5)=57					

eej01-3n