Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours					
The Stevens la	w describes	the lightness L^*	tness L_r^* as log CIELAB as poten action $L_{FC}^* = m$	tial function	
The Weber-Fechner law is equivalent to the equation: $\Delta L_{\tau} = c L_{\tau}$					[1]
Integration leads to the logarithmic equation: $L^*_{\tau} = k \log(L_{\tau})$.					[2]
Derivation for ΔL^{ϕ}_{τ} =1 leads to the linear equation: $L_{\tau}/\Delta L_{\tau}$ =k=57. [3] For colours in offices the standard contrast range is 25:1=90:3,6. Table 1: CIE tristimulus value Y, luminance L_{τ} and lightnesses L^{ϕ}					
Colour	Tritimulus		relative	CIE	relative
(matte)	value		luminance	lightness	lightness
(contrast)	Y	L	L_r	L* _{CIELAB}	L_r^*
(25:1=90:3,6)		[cd/m ²]	= L/L_u	~m L _r ^{1/2,4}	= $k \log(L_r)$
White W	90	142	5	94	40
(paper)	=18*5	=28,2*5		=50+44	=k log(5)
Grey Z (paper)	18	28,2	1	50	0 =klog(1)
Black N	3,6	5,6	0,2	18	-40
(paper)	=18/5	28,2/5		50-32	=k log(0,2)
For the lightness range between $L_r^*=-40$ and 40 the constant is: $k=40/\log(5)=57$ en $30-\ln$					