Weber-Fechner law in CIE 230:2019 for threshold colour differences of surface colours and two ranges $0.2 \le L_r \le 1$ and $1 \le L_r \le 5$

The Weber-Fechner law describes the lightness L^{+}_{r} as logarithmic function of L_{r} . The Stevens law describes the lightness L^{+}_{rinLAB} as potential function of L_{r} =V/5. IEC 61966–21 uses a similar potential function $L^{+}_{TEC} = m L_{r}^{1/2.4}$.

The Weber-Fechner law is equivalent to the linear equation: $\Delta L_r = c_i L_r$ (i=0,1) [1] Integration leads to the logarithmic equation: $L^*_r = k_i \log(L_r)$ (i=0,1) [2]

Derivation leads for ΔL^*_r =1 to the linear equation: $L_r/\Delta L_r$ = $k_i (k_0$ =46, k_1 =63) [3] For colours in offices the standard contrast range is 25:1=90:3,6.

Table 1: CIE tristimulus value Y, luminance L, and lightnesses L*

Colour (matte)	Tritimulus value	office luminance	relative luminance		relative lightness
(contrast) (25:1=90:3,6)	Y	L [cd/m ²]	L _r =L/L _u	L* _{CIELAB} ~m L _r ^{1/2,4}	L*r =k log(Lr)
White W (paper)	90 =18*5	142 =28,2*5	5	94 =50+44	$44 = k_1 \log(5)$
Grey Z (paper)	18	28,2	1	50	$\begin{array}{l} 0 \\ = k_0 \log(1) \end{array}$
Black N (paper)	3,6 =18/5	5,6 28,2/5	0,2	18 50-32	$-32 = k_0 \log(0,2)$
For the two lightness ranges it is $k_0 = -32/\log(0,2) = 46$ and $k_1 = 44/\log(5) = 63$.					

een30-2n