Linienelement-Gleichungen nach CIE 230:219		Linienelement-Greichngen: Lautheit – Schallpegel 1)
Farbschwellen–(t)Funktion $f_t(x) = \Delta Y_t = \Delta x Y_u$ $\Delta Y_t = (A_1 + A_2 Y)/A_0$ $A_0 = 1, 5, A_1 = 0,0170, A_2 = 0,0058$	[0]	Einfache Gleichung nach dem <i>Weber-Fechner</i> -Gesetz zwischen der Lautheit <i>N</i> * und dem Schallpegel <i>E</i>
AV. 1+br	[1]	$\frac{\Delta N^*}{N^*} = \mathbf{n} \frac{\Delta E}{E}$ Es wird an der Hörschwelle angenommen $E_{\mathbf{s}}$
$F_{\text{tu}}(x) = \int \frac{f'_{\text{tu}}(x)}{f_{\text{tu}}(x)} dx = \int \frac{\mathbf{b}}{1 + \mathbf{b}x} dx$	[2]	$\frac{\Delta N^*}{N^* + N^*_{\rm S}} = \mathbf{n} \frac{\Delta E}{E + E_{\rm S}} $ [2]
Beispiel für $L^*_{\mathbf{tu}}(x)$, $\Delta Y_{\mathbf{t}}$ mit $x = Y/Y_{\mathbf{u}}$, $x_{\mathbf{u}} = 1$, b=6,141:		Beidseitige Integration und Forderung $N^*=0$ für $E=0$ $N^*=N^*_{s}\left[\left(1+\frac{E}{E_{r}}\right)^{n}-1\right]$ [3]
$L*_{tu}(x) = \frac{L*_{t}(x)}{L*_{tu}(x)} = \frac{\ln(1+bx)}{\ln(1+b)}$	[3]	Kleine Änderung Schwellenfaktor s und $N*=0$ für $E=E_s$
$f_{\text{tu}}(x) = \frac{\Delta Y_{\text{t}}}{\Delta Y_{\text{tot}}} = \frac{1 + \mathbf{b} x}{1 + \mathbf{b}}$	[4]	$N^* = N^*_{s} \left[\left(1 + s \frac{E - E_{s}}{E_{s}} \right)^{n} - 1 \right] $ [4]
egw60-5a ens00-5n		 Zwicker E., Feldkeller R., (1967), Das Ohr als Nachrichtenempfänger (the ear as information receiver), Hirzel-Verlag, 232 pages, see 133–139 egw60–6a ens00–6a
Linienelementgleichungen: Helligkeit-Leuchtdichte	e 1)	Linienelementgleichungen: Helligkeit-Hellbezugswert
Einfache Gleichung nach dem Weber-Fechner-Gesetz zwischen der Helligkeit L* und der Leuchtdichte L	:	Richter ¹⁾ benutzte folgende Gleichung zur Annäherung zwischen der Helligkeit <i>L*</i> und dem Hellbezugswert <i>Y</i>
$\frac{\Delta L^*}{L^*} = \mathbf{n} \frac{\Delta L}{L}$	[1]	$L^* = L^*_{s} \left[\left(1 + s \frac{Y - Y_{s}}{L_{s}} \right)^{n} - 1 \right] $ [1]
Es wird an der Leuchtdichteschwelle angenommen $L_{\mathbf{S}}$		Die Parameter sind ür die Munsell Value-Funktion ²⁾
$\frac{\Delta L^*}{L^* + L^*_{s}} = \mathbf{n} \frac{\Delta L}{L + L_{s}}$	[2]	$L*_s=2,5125 s=0,4250 $ $Y_s=0,1551 $ $n=0,3333 $ [2]
Beidseitige Integration und Forderung $L*=0$ für $L=0$		Die Parameter sind ür die CIELAB-Helligkeits-Funktion ³⁾
$L^* = L^*_{S} [(1 + \frac{L}{L_{S}})^n - 1]$	[3]	$L^* = 116 (Y/Y_n)^{1/3} - 16 (0.8 < Y < 100, Y_n = 100) [3]$
Kleine Änderung Schwellenfaktor s und $L*=0$ für $L=L$		$L*_s=2,5125 s=0,4250 Y_s=0,1551 n=0,3333 [4]$
$L^* = L^*_s \left[\left(1 + s \frac{L - L_s}{L_s} \right)^n - 1 \right]$ 1) Richter, Klaux, (1969), Antagonistic signals in colour vision and relation with perceived colour order (in German), Dis. Universität Basel, 150 pages, see 115-12	[4]	D Richter, Klaus., (1969). Antagonistic signals in colour vision and relation with the perceived colour order (in German), Dis. Ghrversität Basel, 150 pages, see 115-123, 74 MB, siehe freies Herunterladen https://edoc/unibas.ch/72306/ 2) Newhall, S.M. Nickerson, D., Judd., D. B. (1943). Final report of the O.S.A. subcommittee on the spacing of Munsell Colors. OSA 33, 385-418, see p. 417 3) ISO/CEI 116644–2019 Colorimetry, CEI 1976 1-8-879 Colour space
egw60-7a ens00-7n	-	egw60-8a ens00-8n

egw60-7n