

Structure

Introduction

Colour threshold experiment

Conclusion

15. Juni 2010

Threshold Experiment

slide 2 of 22

- Colour assessment experiment
- Surface colours → CIELAB colour space
- > 2° standard observer
- Standard illuminant D65
- > 45°/0° standard viewing condition

15. Juni 2010

slide 3 of 22

Statistic

- > 40 person participated in the experiments
- None of the test persons had experience in colorimetric assessment
- All test persons had normal colour vision according to the Nagel anomaloskop test
- > 17 women and 23 men have taken part
- The average age was about 25 years. Only six person which were older than 30 participated

15. Juni 2010

slide 4 of 22

Colour Threshold Experiment

- Yes/No decision
 - Test person can see a difference or not
- Direct contact of the samples
 - Between the areas was no gap → other colour threshold experiments have shown that 25 % of the test persons think to see a colour diffeence when they look at the same colour (hairline, gloss difference effect)
- > Symmetric spread of the CIELAB colours
 - Consistent spread of the reference colours and colour change in four different directions in CIELAB space

Princip of the Threshold Experiment

The colour differences are created over "addition" of a second illuminant to the standard illuminant D65

15. Juni 2010 slide 6 of 22

Schematic Experiment Set-up

slide 7 of 22

Picture of the Set-up

15. Juni 2010

Threshold Experiment

slide 8 of 22

Colour Threshold Experiment

Analysis of the Threshold Experiment

- The analysis of the determined colour threshold is separated in two sections
 - **1.** Calculation of threshold ellipsoids around the reference colours:
 - analysis of the calculated colour differences ΔL^* , Δa^* , Δb^*
 - optimization in the CIELAB colour space
 - colour differences ΔL*, Δa*, Δb* as function of CIELAB data
 L*, a* and b* of the reference colours
 - 2. Comparison of the colour differences calculated by several formulas for the colour threshold:
 - analysis with the quotient Θ
 - analysis with the STRESS value *S*
 - parametric optimization in the colour difference formulas

15. Juni 2010 slide 10 of 22

Colour Threshold Ellipsoid

- an ellipsoid is calculated out of the four evaluated colour differences
- cut ellipses in the three planes
 - L*-a*-plane
 - L*-b*-plane
 - a*-b*-plane
- the distances of the ellipsoid are calculated in the directions L*, a* and b*
 - Δ*L**
 - ∆*a**
 - ∆*b**

Colour Data Differences

Optimization of the CIELAB Colour Space

▶ large discrepancy between the colour differences ΔL^* , Δa^* , $\Delta b^* \rightarrow$ next step: optimized in the CIELAB colour space (index o, ΔL^*_{o} , Δa^*_{o} , Δb^*_{o})

15. Juni 2010

slide 13 of 22

Differences of the optimizied Colour Datas

Analysis of the Characteristics of Colour Differences

colour differences ∆L*, ∆a*, ∆b* depend very much on the reference colour

- colour difference ∆L*, ∆a* and ∆b* as separate function of the colour data L*, a* and b*
- > the following function (polynomial) is used: $f(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2$

15. Juni 2010

slide 15 of 22

Colour Data Difference ΔL^* as Function of L^*

slide 16 of 22

Comparison of the Colour Difference Formulas

- Comparison of the colour differences ∆E* calculated by several formulas for the colour threshold
 - the perfect formula leads to the same value for every colour threshold
- calculation of the quotient
 o und the STRESS value S
- optimization in the colour difference formulas by their adjustment parameters

15. Juni 2010 slide 17 of 22

Quotient Θ

$$\Theta = \frac{\Delta E *_{\min}}{\Delta E *_{\max}}$$

- ∆*E**_{min} is the smallest of four colour differences at colour threshold for one sample
- ∆E^{*}_{max} is the largest of four colour differences at colour threshold for one sample
- a good quotient is near to 1

15. Juni 2010

slide 18 of 22

$$S = 100 \cdot \sqrt{\frac{\sum (\Delta E_{i} - F \cdot \Delta V_{i})^{2}}{\sum \Delta E_{i}^{2}}}$$

developed at the university of Granada (Measurement of the relationship between perceived and computed color differences; P.A. Garcia, R. Huertas, M. Melgosa, G. Cui; 2007; J. Opt. Soc. Am. A, Vol. 24 Nr. 7, Seiten 1823-1829)

- ∆*E*_i are the four colour differences at colour threshold for one sample
- AV_i is set 1 → four colour differences at colour threshold for one sample should have the same value
- a good STRESS value is near to 0

15. Juni 2010

slide 19 of 22

Comparison of some Colour Difference Formulas

- values Θ_{100} and S_{100} are introduced for better comparability
- values near to 100 are better

$$\Theta_{100} = 100 \cdot \Theta$$
 $S_{100} = 100 - S$

	Θ _{100,s}	S _{100,s}	optimized parameters				Θ _{100,p}	S _{100,p}
CIELAB	29,800	54,587	α	0,515	β	0,153	60,100	80,200
CMC	32,600	56,937	1	0,418	С	2,417	46,200	71,436
CIE94	35,600	58,674	K _C	4,432	K _H	2,025	44,600	71,371
CIEDE2000	34,600	60,668	K _C	2,953	K _H	3,179	49,400	74,041
DIN99	44,500	67,674	k _E	1,756	k _{CH}	1,950	53,000	76,549
DIN990	34,700	59,367	k _E	0,776	k _{CH}	3,439	48,400	74,559
LABJNDS	29,400	59,621	a ₀	2,519	b ₀	0,609	62,700	81,237

15. Juni 2010

slide 20 of 22

STRESS Value of other Experiment

15. Juni 2010

Threshold Experiment

slide 21 of 22

Conclusions

- The yellow-blue difference ∆b* is by a factor 2 larger compared to the red-green difference ∆a* and by a factor 3 larger compared to the lightness difference ∆L* at colour threshold
- None of the existing colour difference formulas can be used to describe the colour threshold in agreement with *Melgosa (2007)*
- For our experimental conditions the colour difference calculation can be optimized by using two parameters. Than a appropriate agreement is reached, but this is no general solution

15. Juni 2010

slide 22 of 22

END

Thank you for your attention!

15. Juni 2010

Threshold Experiment

slide 23 of 22