Equations: colorimetric data transfer from rgbd to nce*d data and LCH*ad data Given: rgb_d device colour data of any colour $rgb_d = lab*rgb_d$ and of 48 step colour circle j=0 to 47 $rgb_{Md,j}$ and adapted CIELAB data $L^*_{Md,j}$, $C^*_{ab,a,Md,j}$, $h_{ab,a,Md,j} = LCH^*_{a,Md,j}$ Aim: calculate nce^*_d with $(0 \le n^*_d, c^*_d, e^*_d \le 1)$ (similar to NCS data) and $LCH^*_{a,d}$ data of the device colour Data of a given device (d) colour relative chroma of the device colour $c_{d}^{*} = max [rgb_{d}] - min [rgb_{d}]$ relative blackness of the device colour $n_{d}^{*} = 1 - max [rgb_{d}]$ relative triangle lightness of the device colour $t_{d}^{*} = 1 - n_{d}^{*} - 0.5 c_{d}^{*}$ relative red-green chroma in 6x60 degree system s $a_{rs.d}^* = r_d \cos(30) + g_d \cos(150)$ relative yellow-blue chroma in 6x60 degree system s $b_{rs,d}^* = r_d \sin(30) + g_d \sin(150) + b_d \sin(270)$ hue angle in 6x60 degree system s $h_{ab,s,d} = arctan[b_{rs,d}^*/a_{rs,d}^*] \quad (0 \le h_{ab,s,d} \le 360) \quad (6)$ hue number in 6x60 degree system s $e_{d}^{*} = h_{ab.s.d}/360$ $(0 < = e_{d} < = 1)$ CIELAB hue angle in device system $h_{ab,a,d} =$ function $[h_{ab,s,d}]$ (with table/equations) (8) adapted CIELAB LCH*a.d data of maximum colour Md $L_{Md}^* =$ function [$h_{ab,a,d}$] (with table/equations) (9)

relative lightness of maximum colour M_d relative lightness of the device colour adapted CIELAB LCH*a d data of the device colour

$$C^*_{ab,a,Md} =$$
function $[h_{ab,a,d}]$ (with table/equations)(10)

$$h_{\rm ab,a,Md} = h_{\rm ab,a,d} \tag{11}$$

$$l^*_{Md} = [L^*_{Md} - L^*_{Nd}] / [L^*_{Wd} - L^*_{Nd}]$$
(12)

$$l^*_{d} = t^*_{d} + l^*_{Md} c^*_{d} + 0.5 c^*_{d}$$
(13)

$$L^*_{d} = l^*_{d} \left[L^*_{Wd} - L^*_{Nd} \right] + L^*_{Nd}$$
(14)

$$C_{ab,a,d}^* = c_d^* C_{ab,a,Md}^*$$
 (15)

(1)

(2)

(3)

(4)

(5)

(7)