CIELAB lightness <i>L</i> *, tristimulus value discrimination <i>dY</i> , contrast (<i>Y</i> / <i>dY</i>), and sensitivity(<i>dY</i> / <i>Y</i>)	CIELAB lightness L*, CIE tristimulus value discrimination dYand CIE contrast sensitivity (Y/dY)
CIELAB lightness for all colours, $L^*_u=50$ for $Y_u=18$ $L^*=66 (Y/Y_u)^{1/3} - 16 (Y_u=18, Y > 1)$	CIELAB lightness for all colours, $L^*_w=100$ for $Y_w=100$ $L^*=116 (Y/Y_n)^{1/3} - 16$ (Y _n =100, Y > 1)
For the grey discrimination we get: $dL^*/dY = (66/Y_u) (1/3) (Y/Y_u)^{-2/3}$	For the grey discrimination we get: $dL^*/dY = (116/Y_n) (1/3) (Y/Y_n)^{-2/3}$
and for $dL^*=1$ (about 3 thresholds) we can write: $dY = 3 (Y_u/66) (Y/Y_u)^{2/3}$	and for $dL^*=1$ (about 3 thresholds) we can write: $dY = (3(Y_n^{-1/3})/116) (Y)^{2/3}$
or $\log(dY) = \log(3(Y_u/66)) + (2/3)\log(Y/Y_u)$	or $\log(dY) = \log(3(Y_n^{1/3})/116) + (2/3)\log(Y)$
therefore in a log-log diagram the slope is (2/3).	therefore in a log-log diagram the slope is (2/3).
for the CIE contrast sensitivity, and for $dL^* = 1$ it is valid: $Y/dY = (1/3) (66/Y_u) (Y/Y_u)^{1/3}$	for the CIE contrast sensitivity, and for $dL^* = 1$ it is valid: $Y/dY = (1/3) (116/(Y_n^{1/3})) Y^{1/3}$
or $\log(Y/dY) = \log((1/3)(66/Y_u)) + (1/3)\log(Y/Y_u)$	or $\log(Y/dY) = \log((1/3)(116/(Y_n^{1/3})) + (1/3)\log(Y)$
hea01-5a, eer30-1n	hea01–6a, eer30–2n
IECsRGB-triangle lightness T*, CIE tristimulus value discri- mination dY and CIE contrast (Y/dY) sRGB: see IEC 61966-2-1	IECsRGB-triangle lightness T*, CIE tristimulus value discri- mination dY and CIE contrast (Y/dY) sRGB: see IEC 61966-2-1
$T^*_{sRGB,100} = 100 (Y/Y_n)^{1/2,4}$ is an approximation of L^*_{CIELAB}	$T_{\rm sRGB,100}^{*} = 100 (Y/Y_n)^{1/2,4}$ is an approximation of $L_{\rm CIELAR}^{*}$
sRGB-triangle lightness for <i>achromatic</i> colours: W	sRGB-triangle lightness for <i>chromatic</i> colours: RGB
$T_{\rm sRGB,100}^{*} = 100 (Y/Y_{\rm n})^{1/2,4}$ (Y _n =100)	$T^*_{sRGB,100} = 100 (Y/Y_n)^{1/2,4} (Y_n = 22(R), =71(G), =07(B))$
For the grey discrimination we get:	For the discrimination we get:
$dT_{\text{*}_{\text{sRGB},100}/dY}^{*} = (1/2,4) (Y/Y_{\text{n}})^{-1,4/2,4} = 0,42 (Y/Y_{\text{n}})^{-0,58}$	$dT_{\rm sRGB,100}^{*}/dY = (1/2,4) (Y/Y_{\rm n})^{-1,4/2,4} = 0,42 (Y/Y_{\rm n})^{-0,58}$
and for $dT_{\rm *sRGB,100}=1$ (about 3 thresholds) we can write: $dY = 2,4$ $(Y/Y_{\rm n})^{1,4/2,4}$	and for $dT^*_{sRGB,100}$ =1 (about 3 thresholds) we can write: $dY = 2.4 (Y/Y_n)^{1.4/2.4}$
or $\log(dY) = \log(2,4) + (1,4/2,4) \log(Y/Y_n)$	or $\log(dY) = \log(2,4) + (1,4/2,4) \log(Y/Y_n)$
therefore in a log-log diagram the slope is 1,4/2,4.	therefore in a log-log diagram the slope is 1,4/2,4.
for the CIE contrast sensitivity, and for $dT^*_{sRGB,100}$ =1: $Y/dY = (Y_n^{1,4/2,4}/2,4) (Y/Y_n)^{1/2,4}$	for the CIE contrast sensitivity, and for $dT^*_{sRGB,100}$ =1: $Y/dY = (Y_n^{1,4/2,4}/2,4) (Y/Y_n)^{1/2,4}$
or $\log(Y/dY) = \log(Y_n^{1,4/2,4}/2,4) + 1/2,4 \log(Y/Y_n)$	or $\log(Y/dY) = \log(Y_n^{1,4/2,4}/2,4) + 1/2,4 \log(Y/Y_n)$
hea01-7a, eer31-1n	hea01-8a, eer31-2n

hea01-7n